No CrossRef data available.
Published online by Cambridge University Press: 26 November 2014
The demand for motor rehabilitation is growing apace with the graying of the population. The utilization of robotic devices in sensorimotor rehabilitation therapy has received increased attention during the last decade. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor function, their widespread use remains somewhat limited by a number of factors, including the assessment of the true cost-to-benefit ratio relative to other types of rehabilitation approaches and parameters that would optimize their long-term efficacy. Understanding human sensorimotor control and brain plasticity can provide insight into the design of robot hardware and controllers with the appropriate reference or desired output. On the other hand, the control of the physical interaction of the therapeutic device with the subject to effectively accelerate recovery is of paramount importance. This special issue focuses on the current state of knowledge about sensorimotor control and brain plasticity, models of sensorimotor functional recovery, and use of intelligent robot controllers to provide robotic-assisted therapy for motor rehabilitation.