Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:23:28.123Z Has data issue: false hasContentIssue false

Dynamic model of a two-trailer articulated vehicle subject to nonholonomic constraints

Published online by Cambridge University Press:  09 March 2009

P. Bolzern
Affiliation:
Dip. Elettronica e Informazione, Politecnico di Milano Piazza L. da Vinci 32, 20133 Milano (Italy).
R. DeSantis
Affiliation:
Dept. de Genie Electrique et Genie Informatique Ecole Polythecnique de Montreal 2900 Boul. Edouard-Mont Petit, C.P. 6079-A Montreal, Quebec (Canada)
A. Locatelli
Affiliation:
Dip. Elettronica e Informazione, Politecnico di Milano Piazza L. da Vinci 32, 20133 Milano (Italy).
S. Togno
Affiliation:
Dip. Elettronica e Informazione, Politecnico di Milano Piazza L. da Vinci 32, 20133 Milano (Italy).

Summary

The dynamic model of an articulated vehicle consisting of one tractor and two semi-trailers is derived according to a systematic approach available in the literature. The model is produced on the assumption of no slippage, which enforces nonholonomic constraints. The resulting equations encompass a number of significant special cases.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cox, I.J. and Wilfong, G.T., Autonomous Robot Vehicles (Springer-Verlag, New York, 1990).CrossRefGoogle Scholar
2.Fenton, R.E., Melocik, G.C. and Olson, K.W., “On the Steering of Automated Vehicles: Theory and ExperimentsIEEE Trans, on Automatic Control AC-21, 306314 (1976).CrossRefGoogle Scholar
3.Hessburg, T. and Tomizuka, M., “Fuzzy Logic Control for Lateral Vehicle Guidance” IEEE Control Systems 5563 (August, 1994).CrossRefGoogle Scholar
4.DeSantis, R.M., “Path-Tracking for Car-Like and Tractor- Trailer-Like RobotsInt. J. Robotic Research 13, No. 3, 533544 (1994).CrossRefGoogle Scholar
5.Shin, D.H., Singh, S. and Lee, J.J., “Explicit Path-Tracking by Autonomous VehiclesRobotica 10, 539554 (1992).CrossRefGoogle Scholar
6.Hemami, A., Mehrabi, M.G. and Cheng, R.M.H., “A Synthesis of an Optimal Control Law for Path Tracking in Mobile RobotsAutomatica 8, No. 2, 383387 (1992).Google Scholar
7.Sampei, M., Tamura, T., Kobayashi, T. and Shibui, N., “Arbitrary Path Tracking Control of Articulated Vehicles Using Nonlinear Control TheoryIEEE Trans, on Control Systems Technology 3, No. 1, 125131 (1995).CrossRefGoogle Scholar
8.Laumond, J.P., “Controllability of a multibody Mobile RobotIEEE Trans, on Robotics and Automation 9, No. 6 (1993).CrossRefGoogle Scholar
9.DeSantis, R.M.. “Dynamic Modeling of Mechanical Systems subject to Holonomic and Nonholonomic Constraints” EPM/RT–94/04 (Ecole Polytechnique de Montréal, 1994).Google Scholar
10.Kane, T.R. and Levison, D.A., Dynamics: Theory and Applications (McGraw-Hill, New York, 1985).Google Scholar
11.Saha, K.S. and Angeles, J., “Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement Trans, of the ASME Journal of Applied Mechanics 58,238243 (1991).CrossRefGoogle Scholar