Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T00:12:36.510Z Has data issue: false hasContentIssue false

Dynamic balance optimization in biped robots: Physical modeling, implementation and tests using an innovative formula

Published online by Cambridge University Press:  22 May 2014

G. G. Muscolo*
Affiliation:
Creative and Visionary Design Laboratory, Humanot s.r.l., Via Amedeo Modigliani, 7, 59100, Prato, Italy PMAR Lab., DIME-MEC, Scuola Politecnica, University of Genova, Via all'Opera Pia, 15, Genova, Italy
C. T. Recchiuto
Affiliation:
Electro-Informatic Laboratory, Humanot s.r.l., Via Amedeo Modigliani, 7, 59100, Prato, Italy
R. Molfino
Affiliation:
PMAR Lab., DIME-MEC, Scuola Politecnica, University of Genova, Via all'Opera Pia, 15, Genova, Italy
*
*Corresponding author. E-mail: [email protected]; [email protected]

Summary

In this paper, an analytical formula for the determination of the center of mass position in humanoid platforms is proposed and tested in a real humanoid robot. The formula uses the force-torque values obtained by the two force-torque sensors applied on the feet of the robot and the measured currents required from the motors to maintain balance as inputs. The proposed formula outputs the real center of mass position that minimizes the errors between real humanoid robots and virtual models. Data related to the Zero Moment Point positions and to the joint movements are compared with the target values, showing how the application of the proposed formula enables achieving better repeatability and predictability of the static and dynamic robot behaviour.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, J.-H., Kim, J.-Y. and Oh, J.-H., “Adjustment of Home Posture of Biped Humanoid Robot Using an Inertial Sensor and Force Torque Sensors”, Proceedings of the 2007 IEEE/RSJ InternationalConference on Intelligent Robots and Systems, San Diego, CA, USA (Oct. 29 – Nov. 2, 2007).Google Scholar
2. Nunez, V., Nadjar-Gauthier, N., Yokoi, K., Blazevic, P. and Stasse, O., “Inertial Forces Posture Control for Humanoid Robots Locomotion”. Humanoid Robots: Human-like Machines, Itech, Vienna, Austria (Jun. 2007) 642 pp.Google Scholar
3. Kwon, S. J. and Oh, Y., “Estimation of the Center of Mass of Humanoid Robot”, Proceedings of the International Conference on Control, Automation and Systems 2007, COEX, Seoul, Korea (Oct. 17–20, 2007).Google Scholar
4. Ayusawa, K., Venture, G. and Nakamura, Y., “Identification of Humanoid Robots Dynamics Using Floating-base Motion Dynamics”, Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center. Nice, France (Sept. 22–26, 2008).Google Scholar
5. Sujan, V. A. and Dubowsky, S., “An optimal information method for mobile manipulator dynamic parameter identification,” IEEE/ASME Trans. Mechatronics 8 (2), 215225 (Jun. 2003).Google Scholar
6. Liu, G., Iagnemma, K., Dubowsky, S. and Morel, G., “A Base Force/Torque Sensor Approach to Robot Manipulator Inertial Parameter Estimation”, Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, vol. 4 (May 16–20, 1998) pp. 33163321.Google Scholar
7. Khalil, W., Gautier, M. and Lemoine, P., “Identification of the Payload Inertial Parameters of Industrial Manipulators”, 2007 IEEE International Conference on Robotics and Automation, Roma, Italy (Apr. 10–14, 2007).Google Scholar
8. Swevers, J., Ganseman, C., Tukel, D. B., De Schutter, J. and Van Brussel, H., “Optimal robot excitation and identification”, IEEE Trans. Robot. Autom. 13 (5), 730740 (Oct. 1997).Google Scholar
9. Muscolo, G. G., Recchiuto, C. T., Hashimoto, K., Laschi, C., Dario, P. and Takanishi, A., “A Method for the calculation of the effective Center of Mass of Humanoid robots”, available at: http://www.humanoids2011.org/11th IEEE-RAS International Conference on Humanoid Robots, Bled-Slovenia (Oct. 26th - 28th, 2011).Google Scholar
10. Muscolo, G. G. and Recchiuto, C. T., “Metodo per il calcolo del centro di massa per una piattaforma umanoide,” Italian Patent Pending. FI2011A000232. (Oct. 21th, 2011).Google Scholar
11. Muscolo, G. G., Recchiuto, C. T., Hashimoto, K., Dario, P. and Takanishi, A., “Towards an Improvement of the SABIAN Humanoid Robot: from Design to Optimization”, J. Mech. Eng. Autom. 2 (4), 8084 (2012).Google Scholar
12. Vukobratović, M., “Zero-Moment Point — thirty five years of its life,” Int. J. Humanoid Robot. 1 (1), 157173 (2004).Google Scholar
13. Lim, H., Kaneshima, Y. and Takanishi, A., “Online Walking Pattern Generation for Biped Humanoid Robot with Trunk”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC (May 2002).Google Scholar
14. Lim, H. and Takanishi, A., “Biped walking robots created at Waseda University: WL and WABIAN family”. Phil. Trans. R. Soc. A, 49–64 365 (2007).Google Scholar
15. Beira, R., Lopes, M., Praça, M., Santos-Victor, J., Bernardino, A., Metta, G., Becchi, F. and Saltarén, R., “Design of the Robot-Cub (iCub) Head,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida (May 2006).Google Scholar
16. Muscolo, G. G., Hashimoto, K., Takanishi, A. and Dario, P., “A comparison between two force-position controllers with gravity compensation simulated on a humanoid arm,” J. Robot., Hindawi Publishing Corporation (2013).Google Scholar
17. Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M. and Inoue, H., “A fast dynamically equilibrated walking trajectory generation method of humanoid robot,” Auton. Robots 12, 7182 (2002).Google Scholar
18. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. and Hirukawa, H., “Biped walking pattern generation by using preview control of zero-moment point,” Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan (Sep. 14–19, 2003).Google Scholar
19. Vanderborght, B., “Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness”, Star, Springer tracts in advanced robotics, 63 (2010).Google Scholar