Published online by Cambridge University Press: 31 May 2021
In minimally invasive surgery, surgical instruments with a wrist joint have better flexibility. However, the bending motion of the wrist joint causes a coupling motion between the end-effector and wrist joint, affecting the accuracy of the movement of the surgical instrument. Aiming at this problem, a new gear train decoupling method is proposed in the paper, which can automatically compensate for the coupled motion in real-time. Based on the performance tests of the instrument prototype, a series of decoupling effects tests are carried out. The test results show that the surgical instrument has excellent decoupling ability and stable performance.