Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-10T14:48:20.994Z Has data issue: false hasContentIssue false

Design of robust fractional order fuzzy PID sliding mode controller based on hybrid swarm intelligence algorithm for a 6-DOF robotic manipulator

Published online by Cambridge University Press:  07 February 2025

Oguzhan Karahan
Affiliation:
Department of Electronics and Communications Engineering, Kocaeli University, Kocaeli, Turkey
Hasan Karci*
Affiliation:
Department of Electronics and Communications Engineering, Kocaeli University, Kocaeli, Turkey
*
Corresponding author: Hasan Karci; Email: [email protected]

Abstract

In this paper, fractional-order (FO), intelligent, and robust sliding mode control (SMC) and stabilization of inherently nonlinear, multi-input, multi-output 6-DOF robot manipulators are investigated. To ensure robust control and better performance of the robot system, significant studies on various control transactions have been explored. First, a sliding proportional-integral-derivative (PID) surface is conceived and then its FO constitute is developed. It is an important fact that in SMC, the reaching phase is fast and the chattering is abated in the sliding phase. In particular, the discontinuity in the SMC is prevented in view of the boundary layer obtained by recommending the sigmoid function together with fuzzy logic to eliminate the chattering phenomenon. A hybrid tuning method consisting of gray wolf optimization and particle swarm optimization (GWO-PSO) algorithms is applied to tune the parameters of PID sliding mode control (PIDSMC), FO PIDSMC (FOPIDSMC), fuzzy PIDSMC (FPIDSMC), and FO fuzzy PIDSMC (FOFPIDSMC) controllers. In simulation results, the tuned FOFPIDSMC controller consistently outperforms PIDSMC, FOPIDSMC, and FPIDSMC controllers tuned by the GWO-PSO in dynamic performance, trajectory tracking, disturbance rejection, and mass uncertainty scenarios. It has been seen through a thorough performance analysis that 91.93% and 44.13% improvement are, respectively, obtained for mean absolute error (MAE) and torques root mean square (RMS) values of the joints when using from the PIDSMC to the FOFPIDSMC. Finally, the simulation outcomes reveal the superior aspects of the designed FOFPIDSMC and also demonstrate that the FOFPIDSMC controller enhances the dynamic performances of the 6-revolute universal robots 5 (6R UR5) robot manipulator under a variety of operating conditions.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Craig, J. J., Introduction to robotics: Mechanics and control (3rd ed., Pearson, USA, 2014).Google Scholar
Bingül, Z. and Karahan, O., “Real-time trajectory tracking control of Stewart platform using fractional order fuzzy PID controller optimized by particle swarm algorithm,” Ind. Robot Int. J. Robot. Res. Appl. 49(4), 708725 (2022). doi: 10.1108/IR-07-2021-0157.CrossRefGoogle Scholar
Kumar, P. S. and Subudhi, B., “Position control of a flexible manipulator using a new nonlinear self-tuning PID controller,” IEEE/CAA J. Autom. Sin. 7(1), 136149 (2020). doi: 10.1109/JAS.2017.7510871.Google Scholar
Jayaswal, K., Palwalia, D. K. and Kumar, S., “Performance investigation of PID controller in trajectory control of two-link robotic manipulator in medical robots,” J. Interdiscip. Math. 24(2), 467478 (2021). doi: 10.1080/09720502.2021.1893444.CrossRefGoogle Scholar
Shaban, E. M., Sayed, H. and Abdelhamid, A., “A novel discrete PID+ controller applied to higher order/time delayed nonlinear systems with practical implementation,” Int. J. Dyn. Control 7(3), 888900 (2018). doi: 10.1007/s40435-018-0472-5.Google Scholar
Ege, M. and Kucuk, S., “Energy minimization of new robotic-type above-knee prosthesis for higher battery lifetime,” Appl. Sci. 13(6), 3868 (2023). doi: 10.3390/app13063868.CrossRefGoogle Scholar
Zhang, X., “Robust integral sliding mode control for uncertain switched systems under arbitrary switching rules,” Nonlinear Anal. Hybrid Syst. 37, 100900 (2020). doi: 10.1016/j.nahs.2020.100900.CrossRefGoogle Scholar
Sachan, S., Swarnkar, P. and Nema, S., “Design of smoothing FOPID sliding mode controlled robotic manipulator for robotic assisted surgery,” Int. J. Recent Technol. Eng. 8(2), 50025007 (2019). doi: 10.35940/ijrte.B1078.078219.Google Scholar
Slotine, J. J. E. and Li, W., Applied nonlinear control (Prentice Hall, New Jersey, 1991).Google Scholar
Kumar, J., Kumar, V. and Rana, K. P. S., “Design of robust fractional order fuzzy sliding mode PID controller for two-link robotic manipulator system,” J. Intell. Fuzzy Syst. 35(9), 115 (2018). doi: 10.3233/JIFS-169813.Google Scholar
Karakuzu, C., “Parameter tuning of fuzzy sliding mode controller using particle swarm optimization,” Int. J. Innov. Comput. Inform. Control 6(10), 47554770 (2010).Google Scholar
Ertugrul, M. and Kaynak, O., “Neuro sliding mode control of robotic manipulators,” Mechatronics 10(1-2), 239263 (2000). doi: 10.1016/S0957-4158(99)00057-4.CrossRefGoogle Scholar
Efe, M. O., “Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm,” IEEE Trans. Syst. Man Cybern. B Cybern. 38(6), 15611570 (2008). doi: 10.1109/TSMCB.2008.928227.CrossRefGoogle ScholarPubMed
Milbradt, D. M., Evald, P. J. D. O., Hollweg, G. V. and Gründling, H. A., “A hybrid robust adaptive sliding mode controller for partially modelled systems: Discrete-time Lyapunov stability analysis and application,” Nonlinear Anal. Hybrid Syst. 48, 101333 (2023). doi: 10.1016/j.nahs.2023.101333.CrossRefGoogle Scholar
Roopaei, M., Shabaninia, F. and Karimaghaee, P., “Iterative sliding mode control,” Nonlinear Anal. Hybrid Syst. 2(2), 256271 (2008). doi: 10.1016/j.nahs.2006.04.013.CrossRefGoogle Scholar
Zhang, X., Li, H., Li, G., Chen, T. and Shan, J., “Continuous PID-SMC based on improved EHGO for robot manipulators with limited state measurements,” J. Franklin Inst. 357(15), 1064810668 (2020). doi: 10.1016/j.jfranklin.2020.09.001.CrossRefGoogle Scholar
Lochan, K., Roy, B. K. and Subudhi, B., “Robust tip trajectory synchronization between assumed modes modeled two-link flexible manipulators using second-order PID terminal SMC,” Robot. Auton. Syst. 97, 108124 (2017). doi: 10.1016/j.robot.2017.08.008.CrossRefGoogle Scholar
Loucif, F. and Kechida, S., “Optimization of sliding mode control with PID surface for robot manipulator by evolutionary algorithms,” Open Comput. Sci. 10(1), 396407 (2020). doi: 10.1515/comp-2020-0144.CrossRefGoogle Scholar
Ahmed, S. and Azar, A., “Adaptive fractional tracking control of robotic manipulator using fixed-time method,” Complex Intell. Syst. 10(1), 369382 (2024). doi: 10.1007/s40747-023-01164-7.CrossRefGoogle Scholar
Podlubny, I., “Fractional-order systems and $PI^{\lambda }D^{\mu }$ controllers,” IEEE Trans. Autom. Control 44(1), 208214 (1999). doi: 10.1109/9.739144.CrossRefGoogle Scholar
Rahmani, M., Ghanbari, A. and Ettefagh, M. M., “Robust adaptive control of a bio-inspired robot manipulator using bat algorithm,” Expert Syst. Appl. 56, 164176 (2016). doi: 10.1016/j.eswa.2016.03.006.CrossRefGoogle Scholar
Ataşlar-Ayyıldız, B., Karahan, O. and Yılmaz, S., “Control and robust stabilization at unstable equilibrium by fractional controller for magnetic levitation systems,” Fractal Fract. 5(3), 101 (2021). doi: 10.3390/fractalfract5030101.CrossRefGoogle Scholar
Krishna, S. and Vasu, S., “Fuzzy PID based adaptive control on industrial robot system,” Mater. Today: Proc. 5(5), 1305513060 (2018). doi: 10.1016/j.matpr.2018.02.292.Google Scholar
Jin, X., Chen, K., Zhao, Y., Ji, J. and Jing, P., “Simulation of hydraulic transplanting robot control system based on fuzzy PID controller,” Measurement 164, 108023 (2020). doi: 10.1016/j.measurement.2020.108023.CrossRefGoogle Scholar
Dhyani, A., Panda, M. K. and Jha, B., “Design of an evolving fuzzy-PID controller for optimal trajectory control of a 7-DOF redundant manipulator with prioritized sub-tasks,” Expert Syst. Appl. 162, 113021 (2020). doi: 10.1016/j.eswa.2019.113021.CrossRefGoogle Scholar
Ravandi, A. K. and Khanmirza, E., “Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control,” Appl. Soft Comput. 70, 864874 (2018). doi: 10.1016/j.asoc.2018.05.048.CrossRefGoogle Scholar
Zaare, S. and Soltanpour, M. R., “Adaptive fuzzy global coupled nonsingular fast terminal sliding mode control of n-rigid-link elastic-joint robot manipulators in presence of uncertainties,” Mech. Syst. Signal Process. 163, 108165 (2022). doi: 10.1016/j.ymssp.2021.108165.CrossRefGoogle Scholar
Amer, A. F., Sallam, E. A. and Elawady, W. M., “Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3-DOF planar robot manipulators,” Appl. Soft Comput. 11(8), 49434953 (2011). doi: 10.1016/j.asoc.2011.06.005.CrossRefGoogle Scholar
Vijay, M. and Jena, D., “PSO-based neuro fuzzy sliding mode control for a robot manipulator,” J. Electr. Syst. Inf. Technol. 4(1), 243256 (2017). doi: 10.1016/j.jesit.2016.08.006.CrossRefGoogle Scholar
Kumar, J., Azar, A. T., Kumar, V. and Rana, K. P. S., “Design of Fractional Order Fuzzy Sliding Mode Controller for Nonlinear Complex Systems,” In: Mathematical Techniques of Fractional Order Systems (2018) pp. 249282. doi: 10.1016/B978-0-12-813592-1.00009-X.CrossRefGoogle Scholar
Rahmani, M., Komijani, H. and Rahman, M., “New sliding mode control of 2-DOF robot manipulator based on extended grey wolf optimizer,,” Int. J. Control Autom. Syst. 18(X), 19 (2020). doi: 10.1007/s12555-019-0154-x.CrossRefGoogle Scholar
Oliveira, J., Oliveira, P. M., Boaventura-Cunha, J. and Tatiana, T. P., “Chaos-based grey wolf optimizer for higher order sliding mode position control of a robotic manipulator,” Nonlinear Dyn. 90(2), 13531362 (2017). doi: 10.1007/s11071-017-3731-7.CrossRefGoogle Scholar
Ayiz, C. and Kucuk, S.. "The Kinematics of Industrial Robot Manipulators Based on the Exponential Rotational Matrices." In: Proc. IEEE Int. Symp. Ind. Electron. (ISIE). (Seoul Olympic Parktel, Seoul, Korea, 2009), pp. 58.CrossRefGoogle Scholar
Spong, M. W., Hutchinson, S. and Vidyasagar, M.. Robot Modeling and Control. 1st edition (John Wiley & Sons, Inc, New York, 2005).Google Scholar
Karahan, O. and Karci, H., “Swarm intelligence based nonlinear friction and dynamics parameters identification for a 6-DOF robotic manipulator,” J. Intell. Robot. Syst. 108(2), 19 (2023). doi: 10.1007/s10846-023-01868-5.CrossRefGoogle Scholar
Liu, J. and Wang, X., Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation (Springer, Berlin, Germany, 2012).Google Scholar
Liu, Q., Liu, D., Meng, W. and An, Q., “Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment,” Int. J. Humanoid Robot. 11(01), 1450004 (2014). doi: 10.1142/S0219843614500042.CrossRefGoogle Scholar
Das, S., Functional Fractional Calculus for System Identification and Controls, 1st edition (Springer, Berlin, Germany, 2008).Google Scholar
Woo, Z. W., Chung, H. Y. and Lin, J. J., “A PID-type fuzzy controller with self-tuning scaling factors,” Fuzzy Sets Syst. 115(2), 321326 (2000). doi: 10.1016/S0165-0114(98)00159-6.CrossRefGoogle Scholar
Yesil, E., Güzelkaya, M. and Eksin, I., “Self-tuning fuzzy PID type load and frequency controller,” Energy Convers. Manag. 45(3), 377390 (2004). doi: 10.1016/S0196-8904(03)00149-3.CrossRefGoogle Scholar
Ataşlar-Ayyıldız, B. and Karahan, O., “Design of a MAGLEV system with PID-based fuzzy control using CS algorithm,” Cybern. Inf. Technol. 20(5), 519 (2020). doi: 10.2478/cait-2020-0037.Google Scholar
MacVicar-Whelan, P., “Fuzzy sets for man-machine interaction,” Int. J. Man-Mach. Stud. 8(6), 687697 (1976). doi: 10.1016/S0020-7373(76)80030-2.CrossRefGoogle Scholar
Kennedy, J. and Eberhart, R. C., “Particle swarm optimization,” Proc. ICNN’95 - Int. Conf. Neural Netw. 4, 19421948 (1995). doi: 10.1109/ICNN.1995.488968.CrossRefGoogle Scholar
Mirjalili, S., Mirjalili, S. M., Lewis, A., , G., “Grey wolf optimizer,” Adv. Eng. Softw. 69, 4661 (2014). doi: 10.1016/j.advengsoft.2013.12.007.CrossRefGoogle Scholar
Nazari-Heris, M., Mohammadi-Ivatloo, B. and Gharehpetian, G., “Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review,” Renew. Sustain. Energy Rev. 74, 116129 (2017). doi: 10.1016/j.rser.2017.02.043.CrossRefGoogle Scholar
Ting, T., Yang, X. S., Cheng, S. and Huang, K., “Hybrid Metaheuristic Algorithms: Past, Present, and Future,” In: Recent Advances in Swarm Intelligence and Evolutionary Computation (Yang, X. S., eds.) Stud. Comput. Intell. 585 (Springer, Cham, 2015) pp. 7183.CrossRefGoogle Scholar
Devarapalli, R., Bhattacharyya, B. and Sinha, N. K., “An intelligent EGWO-SCA-CS algorithm for PSS parameter tuning under system uncertainties,” Int. J. Intell. Syst. 35(10), 15201569 (2021). doi: 10.1002/int.22263.CrossRefGoogle Scholar
Zhang, X., Lin, Q., Mao, W., Liu, S., Dou, Z. and Liu, G., “Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization,” Appl. Soft Comput. 101, 107061 (2021). doi: 10.1016/j.asoc.2020.107061.CrossRefGoogle Scholar
Long, W., Jiao, J., Liang, X. and Tang, M., “An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization,,” Eng. Appl. Artif. Intell. 68, 6380 (2018). doi: 10.1016/j.engappai.2017.10.02.CrossRefGoogle Scholar
Saxena, A., Kumar, R. and Das, S., “β-Chaotic map enabled grey wolf optimizer,” Appl. Soft Comput. 75, 84105 (2019). doi: 10.1016/j.asoc.2018.10.044.CrossRefGoogle Scholar
Gupta, S. and Deep, K., “A novel random walk grey wolf optimizer,” Swarm Evol. Comput. 44, 101112 (2019). doi: 10.1016/j.swevo.2018.01.001.Google Scholar
Shaheen, M. A., Hasanien, H. M. and Alkuhayli, A., “A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution,” Ain Shams Eng. J. 12(1), 621630 (2021). doi: 10.1016/j.asej.2020.07.011.CrossRefGoogle Scholar
Xie, L., Yu, X. and Chen, L., “Robust fuzzy sliding mode control and vibration suppression of free-floating flexible-link and flexible-joints space manipulator with external interference and uncertain parameter,” Robotica 40(4), 9971019 (2022). doi: 10.1017/S0263574721000977.CrossRefGoogle Scholar
Li, F., Zhang, Z., Wu, Y., Chen, Y., Liu, K. and Yao, J., “Improved fuzzy sliding mode control in flexible manipulator actuated by PMAs,” Robotica 40(8), 26832696 (2022). doi: 10.1017/S0263574721001909.CrossRefGoogle Scholar
Toz, M. and Kucuk, S., “Development of derivation of inverse Jacobian matrices for 195 6-DOF GSP mechanisms,” Turk. J. Electr. Eng. Comput. Sci. 24, 41424153 (2016). doi: 10.3906/elk-1501-110.CrossRefGoogle Scholar
Toz, M. and Kucuk, S., “Parallel manipulator software tool for design, analysis, and simulation of 195 GSP mechanisms,” Comput. Appl. Eng. Educ. 23(6), 931946 (2015). doi: 10.1002/cae.21665.CrossRefGoogle Scholar