Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T23:23:31.843Z Has data issue: false hasContentIssue false

Design of robots driven by linear servo systems

Published online by Cambridge University Press:  09 March 2009

P. Minotti
Affiliation:
Laboratorie de Mécanique Appliquée associé au CNRS UFR Sciences et Techniques, Route de Gray, 25030 Besançon (France).
P. Pracht
Affiliation:
G.R.G.T. Département Génie Mécanique, I.U.T. Belfort, Rue Engel Gros, 90000 Belfort (France).

Summary

The performance of robotic manipulators is limited by the nature of the control systems which do not satisfactorily integrate the non-linear phenomena associated with the dynamic behavior of the mechanisms. The significant variations in the axial inertias lead to control problems and require an optimization of the mechanical structures in order to improve the stability of the manipulators. This paper proposes mechanical solutions in the domain of dynamic decoupling of robots and demonstrates, using numerical simulations the value of these solutions in terms of control.

Type
Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Paul, R.P., Robot Manipulators: mathematics, programming and control (MIT Press, Cambridge, Mass., 1981).Google Scholar
2.Koren, Y., La robotique pour ingénieurs (McGraw-Hill Paris, 1986).Google Scholar
3.Frene, J. and Guinot, J.C., “Mécanismes, contacts et tribologie” Le courrier du C.N.R.S. No. 71, 98100 (1988).Google Scholar
4.Aldon, M.J., “Elaboration automatique de modèles dynamiques de robots en vue de leur conception et de leur commande” Thèse d'Etat (USTL Montpellier, 1982).Google Scholar
5.Minotti, P., “Découplage dynamique des manipulateurs: Propositions de solutions mécaniquesJ. Mechanism and Machine Theory 26, No. 1, 107122 (1991).CrossRefGoogle Scholar
6.Renaud, M., “Iterative analytical computation of the dynamical model of a robot manipulator” Rapport de Recherche LAAS No. 86014 (Toulouse, France, 1986).Google Scholar
7.Minotti, P. and Pracht, P., “Optimisation structurelle des manipulateurs: simulation numérique” Proceeding of the sixth SAS world conference: Structural Analysis and Optimisation (FEMCAD, Paris, 1989) pp. 2430.Google Scholar
8.Cuny, B., “Modélisation de systèmes articuléls rigides et déformables par un code de calcul de type expliciteCours de l'Institut pour la Promotion des Sciences de l'Ingénieur, Paris cours 8, 120 (1989).Google Scholar
9.Reboulet, C., Modélisation des robots parallèles. Techniques de la robotique. Architectures et commandes (HERMES, Paris, 1988).Google Scholar
10.Fisher, O., Einführung in die Mechanik Lebender Mechanismen (Leipzig, 1906.)Google Scholar