Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T09:04:22.034Z Has data issue: false hasContentIssue false

Design of a wheeled wall climbing robot based on the performance of bio-inspired dry adhesive material

Published online by Cambridge University Press:  09 June 2021

Hongkai Li*
Affiliation:
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China Science and Technology on Electro-optic Control Laboratory, Luoyang471000, China
Xianfei Sun
Affiliation:
College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
Zishuo Chen
Affiliation:
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
Lei Zhang
Affiliation:
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
Hongchao Wang
Affiliation:
College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
Xing Wu
Affiliation:
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
*
*Corresponding author. Email: [email protected]

Abstract

Inspired by gecko’s adhesive feet, a wheeled wall climbing robot is designed in this paper with the synchronized gears and belt system acting as the wheels by considering both motion efficiency and adhesive capability. Adhesion of wheels is obtained by the bio-inspired adhesive material wrapping on the outer surface of wheels. A ducted fan mounted on the back of the robot supplies thrust force for the adhesive material to generate normal and shear adhesion force whilemoving on vertical surfaces. Experimental verification of robot climbing on vertical flat surface was carried out. The stability and the effect of structure design parameters were analyzed.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Teixeira, M. A. S., Santos, H. B., Dalmedico, N., de Arruda, L. V. R., Neves-Jr, F.. and de Oliveira, A. S., “Intelligent environment recognition and prediction for NDT inspection through autonomous climbing robot,” J. Intell. Rob. Syst. 92, 323342 (2018).CrossRefGoogle Scholar
Santos, H. B., Teixeira, M. A. S., de Oliveira, A. S., de Arruda, L. V. R. and Neves, F.-Jr., “Quasi-omnidirectional fuzzy control of a climbing robot for inspection tasks,” J. Intell. Rob. Syst. 91, 333347 (2017).CrossRefGoogle Scholar
Briones, L., Bustamante, P. and Serna, M., “ROBICEN: A wall-climbing pneumatic robot for inspection in nuclear power plants,” Rob. Comput. Integr. Manuf. 11(4), 287292 (1994).CrossRefGoogle Scholar
Zhu, H. F., Guan, Y. S., Wu, W. Q., Zhang, L. M., Zhou, X. F. and Zhang, H., “Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot,” IEEE-ASME Trans. Mech. 20(2), 653662 (2015).CrossRefGoogle Scholar
Yanagida, T., Mohan, R. E., Pathmakumar, T., Elangovan, K. and Iwase, M., “Design and implementation of a shape shifting rolling-crawling-wall-climbing robot,” Appl. Sci. Basel 7(4), 342 (2017).CrossRefGoogle Scholar
Koo, I. M., Trong, T. D., Lee, Y. H., Moon, H., Koo, J., Park, S. K. and Choi, H. R., “Development of wall climbing robot system by using impeller type adhesion mechanism,” J. Intell. Rob. Syst. 72(1), 5772 (2013).CrossRefGoogle Scholar
Nagaoka, K., Minote, H., Maruya, K., Shirai, Y., Yoshida, K., Hakamada, T., Sawada, H. and Kubota, T., “Passive spine gripper for free-climbing robot in extreme terrain,” IEEE Rob. Autom. Lett. 3(3), 17651770 (2018).CrossRefGoogle Scholar
Pack, R. T., Christopher, J. L. and Kawamura, K., “A Rubbertuator-Based Structure-Climbing Inspection Robot,” Proceedings of International Conference on Robotics and Automation, vol. 1863 (1997) pp. 18691874.CrossRefGoogle Scholar
Nagaya, K., Yoshino, T., Katayama, M., Murakami, I. and Ando, Y., “Wireless piping inspection vehicle using magnetic adsorption force,” IEEE/ASME Trans. Mech. 17(3), 472479 (2012).CrossRefGoogle Scholar
Fischer, W., Tâche, F. and Siegwart, R., “Magnetic Wall Climbing Robot for Thin Surfaces with Specific Obstacles,” Field and Service Robotics: Results of the 6th International Conference (Laugier, C. and Siegwart, R., eds.) (Springer, Berlin, Heidelberg, 2008) pp. 551–561.Google Scholar
Liu, Y., Sun, S., Wu, X. and Mei, T., “A wheeled wall-climbing robot with bio-inspired spine mechanisms,” J. Bionic. Eng. 12(1), 1728 (2015).CrossRefGoogle Scholar
Autumn, K., Buehler, M., Cutkosky, M., Fearing, R., Full, R. J., Goldman, D., Groff, R., Provancher, W., Rizzi, A. A., Saranli, U., Saunders, A. and Koditschek, D. E., “Robotics in Scansorial Environments,Defense and Security (SPIE, 2005) p. 12.Google Scholar
He, B., Xu, S., Zhou, Y. and Wang, Z., “Mobility properties analyses of a wall climbing hexapod robot,” J. Mech. Sci. Technol. 32(3), 13331344 (2018).CrossRefGoogle Scholar
Sitti, M. and Fearing, R. S., “Synthetic gecko foot-hair micro/nano-structures as dry adhesives,” J. Adhes. Sci. Technol. 17(8), 10551073 (2003).CrossRefGoogle Scholar
Yurdumakan, B., Raravikar, N. R., Ajayan, P. M. and Dhinojwala, A., “Synthetic gecko foot-hairs from multiwalled carbon nanotubes,” ChCom (30), 37993801 (2005).Google Scholar
Sitti, M. and Fearing, R. S., “Synthetic Gecko Foot-Hair Micro/Nano-Structures for Future Wall-Climbing Robots,2003 IEEE International Conference on Robotics and Automation (IEEE, 2003) pp. 11641170.Google Scholar
Raut, H. K., Baji, A., Hariri, H. H., Parveen, H., Soh, G. S., Low, H. Y. and Wood, K. L., “Gecko-inspired dry adhesive based on micro-nanoscale hierarchical arrays for application in climbing devices ACS,” Appl. Mater. Interfaces 10(1), 12881296 (2018).CrossRefGoogle Scholar
Han, I. H., Yi, H., Song, C. W., Jeong, H. E. and Lee, S. Y., “A miniaturized wall-climbing segment robot inspired by caterpillar locomotion,” Bioinspiration Biomim. 12(4): 046003 (2017).CrossRefGoogle ScholarPubMed
Peyvandi, A., Soroushian, P. and Lu, J., “A new self-loading locomotion mechanism for wall climbing robots employing biomimetic adhesives,” J. Bionic. Eng. 10(1), 1218 (2013).CrossRefGoogle Scholar
Liu, Y., Kim, H. and Seo, T., “AnyClimb: A new wall-climbing robotic platform for various curvatures,” IEEE-ASME Trans. Mech. 21(4), 1812–1821 (2016).Google Scholar
Ko, H., Yi, H. and Jeong, H. E., “Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb),” Int. J. Precision Eng. Manuf. Green Technol. 4(3), 273280 (2017).CrossRefGoogle Scholar
Autumn, K., Dittmore, A., Santos, D., Spenko, M. and Cutkosky, M., “Frictional adhesion: A new angle on gecko attachment,” J. Exp. Biol. 209(18), 35693579 (2006).CrossRefGoogle ScholarPubMed
Gorb, S., Varenberg, M., Peressadko, A. and Tuma, J., “Biomimetic mushroom-shaped fibrillar adhesive microstructure,” J. R. Soc. Interface 4(13), 271275 (2007).CrossRefGoogle ScholarPubMed
Sugizaki, Y., Shiina, T., Tanaka, Y. and Suzuki, A., “Effects of peel angle on peel force of adhesive tape from soft adherend,” J. Adhes. Sci. Technol. 30(24), 26372654 (2016).CrossRefGoogle Scholar
Kendall, K., “Thin-film peeling-the elastic term,” J. Phys. D Appl. Phys. 8(13), 14491452 (1975).CrossRefGoogle Scholar
Wang, Z., Dai, Z., Yu, Z. and Shen, D., “Optimal Attaching and Detaching Trajectory for Bio-Inspired Climbing Robot Using Dry Adhesive,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2014).CrossRefGoogle Scholar
Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N. and Full, R. J., “Evidence for van der Waals adhesion in gecko setae,” Proc. Nat. Acad. Sci. 99(19), 1225212256 (2002).CrossRefGoogle Scholar