Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T16:51:41.516Z Has data issue: false hasContentIssue false

Design and numerical characterization of a new leg exoskeleton for motion assistance

Published online by Cambridge University Press:  05 August 2014

Cristian Copilusi
Affiliation:
Faculty of Mechanics, University of Craiova, Dolj Romania
Marco Ceccarelli*
Affiliation:
LARM, University of Cassino and South Latium, Italy
Giuseppe Carbone
Affiliation:
LARM, University of Cassino and South Latium, Italy
*
*Corresponding author. E-mail: [email protected]

Summary

This paper addresses attention to a design for a low-cost exoskeleton with fairly simple construction, lightweight, easy to wear and to adapt to human legs. The design core is focused on a cam-mechanism implementation at the ankle joint level of the leg exoskeleton. The engineering feasibility of the proposed design is characterized by numerical simulations for the design process.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carbone, G. and Ceccarelli, M., “Legged robotic systems. Cutting edge robotics”. ARS Scientific Book, Wien. (2005). 553576.Google Scholar
2. Hirai, K., Hirose, M., Haikawa, Y. and Takenaka, T., “The Development of Honda Humanoid Robot,” Proceedings of the IEEE International Conference Robotics and Automation, Leuven-Belgium (1998) pp. 13211326.Google Scholar
3. Huang, G. T., Wearable Robots. (Technology Review, 2004).Google Scholar
4. Tao, Li and Ceccarelli, M., “Design and simulated characteristics of a new biped mechanism”. J. Robot. In print version (2014).Google Scholar
5. Liu, J., Tan, M. and Zhao, X. G., “Legged robots – an overview,” Trans. Inst. Meas. Control. 29 (2), 185202 (2007).CrossRefGoogle Scholar
6. Walsh, C. J., Pasch, K. and Herr, H., “An Autonomous, Under-Actuated Exoskeleton for Load-Carrying Augmentation”. Proceedingsof the IEEE RSJ International Conference on Intelligent Robots and Systems (IROS). Beijing. China (2006) pp. 14101415.Google Scholar
7. Walsh, C. J., Paluska, D., Pasch, K., Grand, W., Valiente, A. and Herr, H., “Development of a Lightweight, Underactuated Exoskeleton for Load-Carrying Augmentation”. Proceedings of the IEEE International Conference on Robotics and Automation. Orlando. USA (2006) pp. 34853491.Google Scholar
8. Walsh, C., Endo, K. and Herr, H., “A quasi-passive leg exoskeleton for load-carrying augmentation”. Int. J. H. R. 4 (3). 487506 (2007).Google Scholar
9. Hu, Y., Yan, G. and Lin, Z., “Stable running of a planar underactuated biped robot”. Robotica Camb. Univ. Press. 29. 657665 (2010).Google Scholar
10. Blaya, J. A. and Herr, H., “Control of a variable-impedance ankle-foot orthosis to assist drop-foot gait”. IEEE Trans. Neural Syst. Rehabil. Eng. 12 (1). 2431 (2004).CrossRefGoogle ScholarPubMed
11. Kazerooni, H. and Steger, R., “The Berkeley lower extremity exoskeleton”. Trans. ASME, J. Dyn. Syst., Meas. Control. 128. 1425 (2006).Google Scholar
12. Pratt, J. E., Krupp, B. T., Morse, C. J. and Collins, S. H., “The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking”. Proceedings of the IEEE International Conference on Robotics and Automation. USA. (2004) pp. 24302435.Google Scholar
13. Shieh, W. B., Tsai, L.W. and Azarm, S., “Design and optimization of a one-degree-of-freedom six-bar leg mechanism for a walking machine”. J. Robot. Syst. 14 (12). 871880 (1997).Google Scholar
14. Kawamoto, H. and Sankai, Y., “Power Assists System HAL-3 for Gait Disorder Person”. Lecture Notes on Computer Science (LNCS). 2398. Germany (2002).Google Scholar
15. Zoss, A. B., Kazerooni, H. and Chu, A., “Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)”. IEEE ASME Trans. Mechatron. 11 (2). 128138 (2006).Google Scholar
16. Jezernik, S., Colombo, G., Keller, T., et al., “Robotic orthosis lokomat: A rehabilitation and research tool”. Neuromodulation: Technology at the Neural Interface. 6 (2). 108115 (2003)Google Scholar
17. Liang, C., Ceccarelli, M. and Takeda, Y., “Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot”. Fronteers Mech. Eng. 7 (4). 357370 (2012).CrossRefGoogle Scholar
18. Li, T., Ceccarelli, M., Essomba, T., Laribi, M. A. and Zeghloul, S., “Analysis of Human Biped Obstacle Overcoming by Motion Capture System”, Proceedings of the RAAD 2012 International Workshop on Robotics. Italy. (2012) pp. 8592.Google Scholar
19. Liang, C. and Ceccarelli, M., “Design and simulation of a waist–trunk system for a humanoid robot”. Mech. Mach. Theory. 53. 5065 (2012).Google Scholar
20. CONTEMPLAS Motion Analysis Equipment. (User manual, 2010).Google Scholar
21. Williams, M.. Biomechanics of Human Motion. (W. B. Saunders Co., Philadelphia and London, 1996).Google Scholar
22. Li, T. and Ceccarelli, M., “Characterization of Human Locomotion by CATRASYS (Cassino Tracking System)”. 469–472 (New Trends in Mechanisms and Machine Science, Springer Dordrecht, 2012).CrossRefGoogle Scholar
23. Li, T. and Ceccarelli, M., “An experimental characterization of a rickshaw prototype”. Int. J. Mech. Control. 12 (2). 2948 (2012).Google Scholar
24. Copilusi, C, Researches Regarding Mechanical Systems Applied in Medicine. Ph.D. Thesis (University of Craiova, 2009).Google Scholar
25. Harold, A. Rothbart, CAM Design Handbook. (The McGraw-Hill Companies, Inc., 2004).Google Scholar
26. MSC Adams User Guide 2010.Google Scholar
27. Giesbers, J., “CONTACT MECHANICS IN MSC ADAMS. A technical evaluation of the contact models in multibody dynamics software MSC Adams”, (BACHELOR THESIS. Advanced Technology. University of Twente, 2012).Google Scholar
28. Chevallereau, C. and Aoustin, Y., “Optimal reference trajectories for walking and running of a biped robot”. Robot. Camb. Univ. Press. 19 (05). 557569 (2001).Google Scholar
29. Liu, C., Atkeson, C. G. and Su, J., “Biped walking control using a trajectory library”. Robot. Camb. Univ. Press. 31 (02). 311322 (2012).Google Scholar
30. Mummolo, C. and Kim, J. H., “Passive and dynamic gait measures for biped mechanism: formulation and simulation analysis”. Robot. Camb. Univ. Press. 31 (04). 555572 (2012).Google Scholar