Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T20:15:35.041Z Has data issue: false hasContentIssue false

Design and Kinematics of a Comanipulated Robot Dedicated to Prostate Brachytherapy

Published online by Cambridge University Press:  22 June 2020

Mozert Djohossou
Affiliation:
Laboratory of Medical Image Processing (LaTIM), INSERM-UMR 1101, Brest, France
Aziza Ben Halima
Affiliation:
Laboratory of Medical Image Processing (LaTIM), INSERM-UMR 1101, Brest, France
Antoine Valérie
Affiliation:
Urology Department, Brest Regional University Hospital, Brest, France
Julien Bert*
Affiliation:
Laboratory of Medical Image Processing (LaTIM), INSERM-UMR 1101, Brest, France
Dimitris Visvikis
Affiliation:
Laboratory of Medical Image Processing (LaTIM), INSERM-UMR 1101, Brest, France
*
*Corresponding author. E-mail: [email protected]

Summary

In brachytherapy, the manual implantation of seeds is not accurate leading to side effects and limiting the use of new procedures. Robotics solutions have to be fully suitable for medical applications especially considering the operating room. This paper investigates a delta robot solution for improving the accuracy of the prostate brachytherapy procedure by proposing a compact and lightweight robot. In addition, the design was thought as a comanipulated robot for a better acceptability and human–machine interaction. The robot kinematics and singularities were determined and the theoretical capability in term of resolution and force feedback was evaluated. A prototype was built in order to experimentally measure the capability of this first prototype.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors share senior authorship

References

Davies, B. L., Harris, S. J. and Dibble, E., “Brachytherapy” an example of a urological minimally invasive robotic procedure,” Int. J. Med. Robot. Comput. Assisted Surg., 1(1), 8896 (2004).CrossRefGoogle ScholarPubMed
Marshall, S. and Taneja, S., “Focal therapy for prostate cancer: The current status,” Prostate Int. 3(2), 3541 (2015).CrossRefGoogle ScholarPubMed
Tran, S., Boissier, R., Perrin, J., Karsenty, G. and Lechevallier, E., “Review of the different treatments and management for prostate cancer and fertility,” Urology 86(5), 936941 (2015).CrossRefGoogle ScholarPubMed
Hope-Stone, H. F., Klevenhagen, S. C., Mantell, B. S., Morgan, W. Y. and Scholnick, S. A., “Use of the curietron at The London Hospital,” Clin. Radiol. 32(1), 1723 (1981).CrossRefGoogle ScholarPubMed
Elliott, D., Berkey, J. and Hoedeman, G., “Automated implantation system for radioisotopeseeds,” U.S. patent 6869390 B2, 22 March 2005.Google Scholar
Schneider, C. M., Okamura, A. M. and Fichtinger, G., “A Robotic System for Transrectal Needle Insertion into the Prostate with Integrated Ultrasound,” 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04, vol. 1 (IEEE, 2004) pp. 365370.CrossRefGoogle Scholar
Fichtinger, G., Fiene, J. P., Kennedy, C. W., Kronreif, G., Iordachita, I., Song, D. Y., Burdette, E. C. and Kazanzides, P., “Robotic assistance for ultrasound-guided prostate brachytherapy,” Med. Image Anal. 12(5), 535545 (2008).CrossRefGoogle ScholarPubMed
Wei, Z., Ding, M., Downey, D. and Fenster, A., “3D TRUS Guided Robot Assisted Prostate Brachytherapy,International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, Heidelberg, 2005) pp. 1724.Google Scholar
Okazawa, S., Ebrahimi, R., Chuang, J., Salcudean, S. E. and Rohling, R., “Hand-held steerable needle device,” IEEE/ASME Trans. Mechatron. 10(3), 285296 (2005).CrossRefGoogle Scholar
Phee, L., Xiao, D., Yuen, J., Chan, C. F., Ho, H., Thng, C. H., Cheng, C. and Ng, W. S., “Ultrasound Guided Robotic System for Transperineal Biopsy of the Prostate,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005 (IEEE, 2005) pp. 13151320.Google Scholar
Meltsner, M., Ferrier, N. and Thomadsen, B., “SU-FF-T-03: Design and quantitative analysis of a novel brachytherapy robot,” Med. Phys. 32(6Part6), 19491949 (2005).CrossRefGoogle Scholar
Bassan, H., Hayes, T., Patel, R. V. and Moallem, M., “A Novel Manipulator for 3D Ultrasound Guided Percutaneous Needle Insertion,” 2007 IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 617622.CrossRefGoogle Scholar
Salcudean, S. E., Prananta, T. D., Morris, W. J. and Spadinger, I., “A Robotic Needle Guide for Prostate Brachytherapy,” IEEE International Conference on Robotics and Automation, 2008. ICRA 2008 (IEEE, 2008) pp. 29752981.CrossRefGoogle Scholar
Hungr, N., Troccaz, J., Zemiti, N. and Tripodi, N., “Design of An Ultrasound-Guided Robotic Brachytherapy Needle-Insertion System,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009 (IEEE, 2009) pp. 250253.CrossRefGoogle Scholar
Jiang, S., Guo, J., Liu, S., Liu, J. and Yang, J., “Kinematic analysis of a 5-DOF hybrid-driven MR compatible robot for minimally invasive prostatic interventions,” Robotica 30(7), 11471156 (2012).CrossRefGoogle Scholar
Plitea, N., Szilaghyi, A. and Pisla, D., “Kinematic analysis of a new 5-DOF modular parallel robot for brachytherapy,” Robot. Comput. Integr. Manufact. 31, 7080 (2015).CrossRefGoogle Scholar
Podder, T. K., Beaulieu, L., Caldwell, B., Cormack, R. A., Crass, J. B., Dicker, A. P., Fenster, A., Fichtinger, G., Meltsner, M. A., Moerland, M. A., Nath, R., Rivard, M. J., Salcudean, T., Song, D. Y., Thomadsen, B. R. and Yu, Y., “AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192,” Med. Phys. 41(10), 101501 (2014).CrossRefGoogle ScholarPubMed
Al-Qaisieh, B., Mason, J., Bownes, P., Henry, A., Dickinson, L., Ahmed, H. U., Emberton, M. and Langley, S., “Dosimetry modeling for focal low-dose-rate prostate brachytherapy,” Int. J. Radiat. Oncol. Biol. Phys. 92(4), 787793 (2015).CrossRefGoogle ScholarPubMed
Riwan, A., Giudicelli, B., Taha, F., Lazennec, J.-Y., Sabhani, A., Kilian, P., Jabbour, Z., VanRhijn, J., Louveau, F., Morel, G., Francoise, V., Armand, D. and Lavallee, S., “Surgico-bot project: Robotic assistant for spine surgery,” Innovat. Res. BioMed. Eng. 32(2), 130134 (2011).Google Scholar
Poquet, C., Mozer, P., Morel, G. and Vitrani, M.-A., “A Novel Comanipulation Device for Assisting Needle Placement in Ultrasound Guided Prostate Biopsies,” IEEE IROS, 4084–4091 (2013).CrossRefGoogle Scholar
L’Orsa, R., Macnab, C. J. and Tavakoli, M., “Introduction to haptics for neurosurgeons,” Neurosurgery 72(1), 139153 (2013).CrossRefGoogle ScholarPubMed
Clavel, R., Conception d’un robot paralle rapide 4 degrés de libertés Ph.D. Thesis (EPFL, Lausanne, Switzerland, 1991).Google Scholar
Opl, M., Holub, M., Pavl, J., Brad, F., Blecha, P., Kozubk, J. and Coufal, J., “DELTA - Robot with Parallel Kinematics,” Proceedings in Mechatronics (Springer, 2011) pp. 445452.CrossRefGoogle Scholar
Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom. 6(3), 281290 (1990).CrossRefGoogle Scholar
Yu, Y., Podder, T. K., Zhang, Y. D., Ng, W. S., Misic, V., Sherman, J., Fuller, D., Rubens, D. J., Strang, J. G., Brasacchio, R. A. and Messing, E. M., “Robotic system for prostate brachytherapy,” Comput. Aided Surg. 12(6), 366370 (2007).CrossRefGoogle ScholarPubMed
www.onshape.com.Google Scholar
Fichtinger, G., DeWeese, T. L., Patriciu, A., Tanacs, A., Mazilu, D., Anderson, J. H., Masamune, K., Taylor, R. H. and Stoianovici, D., “System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance,” Acad. Radiol. 9(1), 6074 (2002).CrossRefGoogle ScholarPubMed
Karnopp, D., “Computer simulation of stick-slip friction in mechanical dynamic Systems,” J. Dyn. Syst. Measure. Controls, 107(1), 100103 (1985).CrossRefGoogle Scholar
Egeland, O. and Gravdahl, J. T., “Modeling and Simulation for Automatic Control,” In: Marine Cybernetics AS (2002). Trondheim, Norway Google Scholar