Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T05:11:14.620Z Has data issue: false hasContentIssue false

Design and Experiments of Pneumatic Soft Actuators

Published online by Cambridge University Press:  17 February 2021

Liqiang Guo
Affiliation:
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang212013, China
Ke Li*
Affiliation:
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang212013, China
Guanggui Cheng
Affiliation:
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang212013, China
Zhongqiang Zhang
Affiliation:
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang212013, China Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou213164, China
Chu Xu
Affiliation:
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang212013, China
Jianning Ding
Affiliation:
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang212013, China Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou213164, China
*
*Corresponding author. E-mail: [email protected]

Summary

The soft actuator is made of superelastic material and embedded flexible material. In this paper, a kind of soft tube was designed and used to assemble two kinds of pneumatic soft actuators. The experiment and finite element analysis are used to comprehensively analyze and describe the bending, elongation, and torsion deformation of the soft actuator. The results show that the two soft actuators have the best actuation performance when the inner diameter of the soft tube is 4 mm. In addition, when the twisting pitch of the torsional actuator is 24 mm, its torsional performance is optimized. Finally, a device that can be used in the production line was assembled by utilizing those soft actuators, and some operation tasks were completed. This experiment provides some insights for the development of soft actuators with more complex motions in the future.

Type
Reply
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao, Y., Shang, J. Z., Liang, K. S., Fan, D. P., Ma, D. X. and Tang, L., “Review of soft-bodied robots,” Chin. J. Mech. Eng. 48(3), 2533 (2012).CrossRefGoogle Scholar
Shi, L., Guo, S., Li, M., Mao, S., Xiao, N., Gao, B., Song, Z. and Asaka, K., “A novel soft biomimetic microrobot with two motion attitudes,” Sensors 12(12), 16732 (2012).CrossRefGoogle ScholarPubMed
Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y., Xie, T. and Yang, W., “Fast-moving soft electronic fish,” Sci. Adv. 3(4), e1602045 (2017).CrossRefGoogle ScholarPubMed
Zhu, F. B., Zhang, C. L., Qian, J., and Chen, W. Q., “Mechanics of dielectric elastomers: materials, structures, and devices,”J. Zhejiang Univ. Sci. A: Appl. Phys. Eng. 17(1), 121 (2016).Google Scholar
Zheng, C., “A review on robotic fish enabled by ionic polymer–metal composite artificial muscles,” Robot. Biomim. 4(1), 24 (2017).Google Scholar
Alcaide, J. O., Pearson, L. and Rentschler, M. E., “Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin,” IEEE International Conference on Robotics & Automation. IEEE, 2017.CrossRefGoogle Scholar
Zhang, L., Xu, M. and Yang, H., “Research on soft manipulator actuated by shape memory alloy (SMA) springs,” 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2017.CrossRefGoogle Scholar
Lee, H., Xia, C. and Fang, N. X.,“First jump of microgel: actuation speed enhancement by elastic instability,” Soft Matter 6(18), 43424345 (2010).CrossRefGoogle Scholar
Nishida, T., Okatani, Y. and Tadakuma, K., “Development of universal robot gripper using MRα fluid,” 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS) (IEEE, 2015).CrossRefGoogle Scholar
Bartlett, N. W., Tolley, M. T., Overvelde, J. T., Weaver, J. C., Mosadegh, B., Bertoldi, K., Whitesides, G. M. and Wood, R. J., “A 3D-printed, functionally graded soft robot powered by combustion,” Science 349(6244), 161165 (2015).CrossRefGoogle ScholarPubMed
Shepherd, R. F., Stokes, A. A., Jacob, F., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A. and Whitesides, G. M., “Using explosions to power a soft robot,” Angew. Chem. 52(10), 28922896 (2013).CrossRefGoogle Scholar
Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. and Whitesides, G. M., “Soft robotics for chemists,” Angew. Chem. 123(8), 1930–1935 (2015).Google Scholar
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M. and Whitesides, G. M., “Multigait soft robot [Chemistry],” Proc. Natl. Acad. Sci. 108(51), 2040020403 (2011).CrossRefGoogle Scholar
Panagiotis, P., Stacey, L., Zheng, W., Nicolini, L. F., Mosadegh, B., Whitesides, G. M. and Walsh, C. J., “Towards a soft pneumatic glove for hand rehabilitation,” IEEE International Conference on Intelligent Robots & Systems. IEEE, 2013.Google Scholar
Bao, G., Chen, L., Zhang, Y., Cai, S., Xu, F., Yang, Q. and Zhang, L., “Trunk-like soft actuator: design, modeling, and experiments,” Robotica 38(4), 732746 (2020).CrossRefGoogle Scholar
Connolly, F., Walsh, C. J., Bertoldi, K., “Automatic design of fiber-reinforced soft actuators for trajectory matching,” Proc. Natl. Acad. Sci. 114(1): 5156 (2017).CrossRefGoogle ScholarPubMed
Yap, H. K., Ng, H. Y., and Yeow, C. H., “High-force soft printable pneumatics for soft robotic applications,” Soft Robot. 3(3): 144158 (2016).CrossRefGoogle Scholar
Yi, S., Yun, S. S. and Paik, J., “Characterization of silicone rubber based soft pneumatic actuators,” IEEE/RSJ International Conference on Intelligent Robots & Systems. 2013.Google Scholar
Martinez, R. V., Fish, C. R., Chen, X. and Whitesides, G. M., “Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators,” Adv. Funct. Mater. 22(7), 1376–384 (2012).CrossRefGoogle Scholar
Florez, J. M., Shih, B., Bai, Y. and Paik, J. K., “Soft pneumatic actuators for legged locomotion,” IEEE International Conference on Robotics & Biomimetics. 2015.CrossRefGoogle Scholar
Marchese, A. D., Onal, C. D., Rus, D.. “Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators.Soft Robot. 1(1): 7584 (2014).CrossRefGoogle ScholarPubMed
Tang, Z., Lu, J., Wang, Z., Ma, G., Chen, W. and Feng, H., “Development of a new multi-cavity pneumatic-driven earthworm-like soft robot,” Robotica 38(12), 22902304 (2020).CrossRefGoogle Scholar
Kwok, S. W., Morin, S. A., Mosadegh, B., So, J.-H., Shepherd, R. F., Martinez, R. V., Smith, B., Simeone, F. C., Stokes, A. A. and Whitesides, G. M., “Magnetic assembly of soft robots with hard components,” Adv. Funct. Mater. 24(15), 21802187 (2014).CrossRefGoogle Scholar
Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K. and Dasgupta, P., “Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach,” Soft Robot. 1(2), 122131.CrossRefGoogle Scholar
Florez, J. M., Shah, M., Martin, M. E., Wurth, S., Baud, L., Zitzewitz, J. V., Brand, R., Micera, S., Courtine, G. and Paik, J., “Rehabilitative soft exoskeleton for rodents,” IEEE Trans. Neural. Syst. Rehabil. Eng. 25(2), 107118 (2017).CrossRefGoogle ScholarPubMed
Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. and Walsh, C. J., “Soft robotic glove for combined assistance and at-home rehabilitation,” Robot. Auton. Syst. 73(C), 135143 (2014).CrossRefGoogle Scholar