Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T01:56:55.379Z Has data issue: false hasContentIssue false

Design and analysis of a thick-panel origami-inspired soft crawling robot with multiple locomotion patterns

Published online by Cambridge University Press:  14 October 2024

Feiyang Shen
Affiliation:
College of Engineering, China Agricultural University, Beijing, 100083, China
Shuofei Yang*
Affiliation:
College of Engineering, China Agricultural University, Beijing, 100083, China
*
Corresponding author: Shuofei Yang; Email: [email protected]

Abstract

Due to the flexibility obtained through both materials and structures, soft robots have wide potential applications in complicated internal and external environments. This paper presents a new soft crawling robot with multiple locomotion patterns that integrate inchworm motion and various turning motions. First, the conceptual design of the proposed robot is presented by introducing thick-panel origami into the synthesis of a crawling robot, resulting in a Waterbomb-structure-inspired hybrid mechanism. Second, all locomotion patterns of the robot are precisely described and analyzed by screw theory in an algebraic manner, which include inchworm motion, restricted planar motion, quantitative turning motion, and marginal exploration motion. Then, the output motion parameter for each locomotion pattern is analytically modeled as a function of the robotic dimensional parameters, and the robot can thus be designed and controlled in a customized way for the expected output motion. Finally, the theoretical analysis and derivations are validated by simulation and physical prototype building, which lay the foundations for the design and manufacture of small-scale soft crawling robots with precise output motions in a complex planar environment.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chen, A., Yin, R. X., Cao, L., Yuan, C. W., Ding, H. K. and Zhang, W. J., “Soft robotics: Definition and research issues,” In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) (2017) pp. 366370.Google Scholar
Saglia, J. A., Tsagarakis, N. G., Dai, J. S. and Caldwell, D. G., “Control strategies for ankle rehabilitation using a high performance ankle exerciser,” In: 2010 IEEE International Conference on Robotics and Automation (ICRA) (2010) pp. 22212227.Google Scholar
Hu, X. H., Cao, L., Luo, Y. G., Chen, A., Zhang, E. and Zhang, W. J., “A novel methodology for comprehensive modeling of the kinetic behavior of steerable catheters,” IEEE ASME Trans. Mechatron. 24(4), 17851797 (2019).CrossRefGoogle Scholar
Gu, G. Y., Zou, J., Zhao, R. K., Zhao, X. H. and Zhu, X. Y., “Soft wall-climbing robots,” Sci. Robot. 3(25), eaat2874 (2018).CrossRefGoogle ScholarPubMed
Ghafoor, A., Dai, J. S. and Duffy, J., “Stiffness modeling of the soft-finger contact in robotic grasping,” ASME J. Mech. Des. 126(4), 646656 (2004).CrossRefGoogle Scholar
Wang, F., Qian, Z. Q., Yan, Z. G., Yuan, C. W. and Zhang, W. J., “A novel resilient robot: Kinematic analysis and experimentation,” IEEE Access 8, 28852892 (2020).CrossRefGoogle Scholar
Noh, M., Kim, S. W., An, S. M., Koh, J. S. and Cho, K. J., “Flea-inspired catapult mechanism for miniature jumping robots,” IEEE Trans. Robot. 28(5), 10071018 (2012).CrossRefGoogle Scholar
Zhao, T. S., Dai, J. S. and Huang, Z., “Geometric synthesis of spatial parallel manipulators with fewer than six degrees of freedom,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 216(12), 11751185 (2002).CrossRefGoogle Scholar
Dai, J. S. and Jones, J. R., “Configuration transformations in metamorphic mechanisms of foldable/erectable kinds,” In: Proceedings of 10th World Congress on the Theory of Machine and Mechanisms (1999).CrossRefGoogle Scholar
Dai, J. S., Holland, N. and Kerr, D. R., “Finite twist mapping and its application to planar serial manipulators with revolute joints,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 209(4), 263271 (1995).CrossRefGoogle Scholar
Kang, R. J., Guo, Y., Chen, L. S., Branson, D. T. and Dai, J. S., “Design of a pneumatic muscle based continuum robot with embedded tendons,” IEEE ASME Trans. Mechatron. 22(2), 751761 (2017).CrossRefGoogle Scholar
Jin, T., Wang, T. H., Xiong, Q., Tian, Y. Z., Li, L., Zhang, Q. and Yeow, C. H., “Modular soft robot with origami skin for versatile applications,” Soft Robot. 10(4), 785796 (2023).CrossRefGoogle ScholarPubMed
Miyashita, S., Guitron, S., Li, S. G. and Rus, D., “Robotic metamorphosis by origami exoskeletons,” Sci. Robot. 2(10), eaao4369 (2017).CrossRefGoogle ScholarPubMed
Miyashita, S., Guitron, S., Yoshida, K., Li, S. G., Damian, D. D. and Rus, D., “Ingestible, controllable, and degradable origami robot for patching stomach wounds,” In: 2016 IEEE International Conference on Robotics and Automation (ICRA) (2016) pp. 909916.Google Scholar
Zhao, Y., Hong, Y. Y., Li, Y. B., Qi, F. J., Qing, H. T., Su, H. and Yin, J., “Physically intelligent autonomous soft robotic maze escaper,” Sci. Adv. 9(36), eadi3254 (2023).CrossRefGoogle ScholarPubMed
Zhu, Y. S., Qi, M. J., Liu, Z. W., Huang, J. M., Huang, D. W., Yan, X. J. and Lin, L. W., “A 5-mm untethered crawling robot via self-excited electrostatic vibration,” IEEE Trans. Robot. 38(2), 719730 (2022).CrossRefGoogle Scholar
Hua, D. Z., Liu, X. H., Sun, S. S., Sotelo, M. A., Li, Z. X. and Li, W. H., “A magnetorheological fluid-filled soft crawling robot with magnetic actuation,” IEEE ASME Trans. Mechatron. 25(6), 27002710 (2020).CrossRefGoogle Scholar
Niu, H. Q., Feng, R. Y., Xie, Y. W., Jiang, B. W., Sheng, Y. Z., Yu, Y., Baoyin, H. X. and Zeng, X. Y., “MagWorm: A biomimetic magnet embedded worm-like soft robot,” Soft Robot. 8(5), 507518 (2021).CrossRefGoogle ScholarPubMed
Wu, Y. C., Yim, J. K., Liang, J. M., Shao, Z. C., Qi, M. J., Zhong, J. W., Luo, Z. H., Yan, X. J., Zhang, M., Wang, X. H., Fearing, R. S., Full, R. J. and Lin, L. W., “Insect-scale fast moving and ultrarobust soft robot,” Sci. Robot. 4(32), eaax1594 (2019).CrossRefGoogle ScholarPubMed
Kim, D. S., Lee, Y. J., Kim, Y. B., Wang, Y. C. and Yang, S., “Autonomous, untethered gait-like synchronization of lobed loops made from liquid crystal elastomer fibers via spontaneous snap-through,” Sci. Adv. 9(20), eadh5107 (2023).CrossRefGoogle ScholarPubMed
Li, Z. W., Myung, N. V. and Yin, Y. D., “Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming,” Sci. Robot. 6(61), eabi4523 (2021).CrossRefGoogle ScholarPubMed
Bao, J. J., Yang, Z., Nakajima, M., Shen, Y. J., Takeuchi, M., Huang, Q. and Fukuda, T., “Self-actuating asymmetric platinum catalytic mobile nanorobot,” IEEE Trans. Robot. 30(1), 3339 (2014).CrossRefGoogle Scholar
Liang, J. M., Wu, Y. C., Yim, J. K., Chen, H. M., Miao, Z. C., Liu, H. X., Liu, Y., Liu, Y. X., Wang, D. K., Qiu, W. Y., Shao, Z. C., Zhang, M., Wang, X. H., Zhong, J. W. and Lin, L. W., “Electrostatic footpads enable agile insect-scale soft robots with trajectory control,” Sci. Robot. 6(55), eabe7906 (2021).CrossRefGoogle ScholarPubMed
Wu, S., Hong, Y. Y., Zhao, Y., Yin, J. and Zhu, Y., “Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation,” Sci. Adv. 9(12), eadf8014 (2023).CrossRefGoogle ScholarPubMed
Salerno, M., Zhang, K. T., Menciassi, A. and Dai, J. S., “A novel 4-DoFs origami enabled, SMA actuated, robotic end-effector for minimally invasive surgery,” In: 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014) pp. 28442849.Google Scholar
Yao, W. and Dai, J. S., “Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space,” ASME J. Mech. Des. 130(2), 022303 (2008).CrossRefGoogle Scholar
Liu, H. H. and Dai, J. S., “An approach to carton-folding trajectory planning using dual robotic fingers,” Rob. Auton. Syst. 42(1), 4763 (2003).CrossRefGoogle Scholar
Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. and Rus, D., “An untethered miniature origami robot that self-folds, walks, swims, and degrades,” In: 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015) pp. 14901496.Google Scholar
Hu, F. W. and Zhang, C., “Origami polyhedra-based soft multicellular robots,” Soft Robot. 11(2), 244259 (2024).CrossRefGoogle ScholarPubMed
Leal, E. R. and Dai, J. S., “From origami to a new class of centralized 3-DoF parallel mechanisms,” In: Proceedings of the ASME. 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) (2007) pp. 11831193.Google Scholar
Zhao, J. S., Wang, J. Y., Chu, F. L., Feng, Z. J. and Dai, J. S., “Structure synthesis and statics analysis of a foldable stair,” Mech. Mach. Theory 46(7), 9981015 (2011).CrossRefGoogle Scholar
Liu, H. H. and Dai, J. S., “Carton manipulation analysis using configuration transformation,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 216(5), 543555 (2002).CrossRefGoogle Scholar
Aimedee, F., Gogu, G., Dai, J. S., Bouzgarrou, C. and Bouton, N., “Systematization of morphing in reconfigurable mechanisms,” Mech. Mach. Theory 96(2), 215224 (2016).CrossRefGoogle Scholar
Zhang, K. T., Qiu, C. and Dai, J. S., “Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators,” ASME J. Mech. Robot. 7(2), 021014 (2015).CrossRefGoogle Scholar
Qin, Y., Dai, J. S. and Gogu, G., “Multi-furcation in a derivative queer-square mechanism,” Mech. Mach. Theory 81, 3653 (2014).CrossRefGoogle Scholar
Chen, Q. Y., Feng, F., Lv, P. Y. and Duan, H. L., “Origami spring-inspired shape morphing for flexible robotics,” Soft Robot. 9(4), 798806 (2022).CrossRefGoogle ScholarPubMed
Yuan, S. S., Cao, S. F., Xue, J. N., Su, S. J., Yan, J. Y., Wang, M., Yue, W. C., Cheng, S. S., Liu, J., Wang, J. L., S., S., Meng, M. Q. H. and Ren, H. L., “Versatile motion generation of magnetic origami spring robots in the uniform magnetic field,” IEEE Rob. Autom. Lett. 7(4), 1048610493 (2022).CrossRefGoogle Scholar
Dai, J. S. and Caldwell, D. G., “Origami-based robotic paper-and-board packaging for food industry,” Trends Food Sci. Technol. 21(3), 153157 (2010).CrossRefGoogle Scholar
Zhang, Z., Zhuang, Z. M., Guan, Y. T. and Dai, J. S., “Design and development of a SLPM-based deployable robot,” Robotica 41(8), 25312551 (2023).CrossRefGoogle Scholar
Chen, Y., Peng, R. and You, Z., “Origami of thick panels,” Science 349(6246), 396400 (2015).CrossRefGoogle ScholarPubMed
Ku, J. S. and Demaine, E. D., “Folding flat crease patterns with thick materials,” J. Mech. Robot. 8(3), 031003 (2016).CrossRefGoogle Scholar
Edmondson, B. J., Lang, R. J., Morgan, M. R., Magleby, S. P. and Howell, L. L., Thick rigidly foldable structures realized by an offset panel technique (American Mathematical Society, Providence, 2015).Google Scholar
Edmondson, B. J., Lang, R. J., Magleby, S. P. and Howell, L. L., “An offset panel technique for thick rigidily foldable origami,” In: Proceedings of the ASME. 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) (2014) p. V05BT08A054.Google Scholar
Sun, B. N., Jia, R., Yang, H., Chen, X., Tan, K., Deng, Q. and Tang, J. D., “Magnetic arthropod millirobots fabricated by 3D-printed hydrogels,” Adv. Intell. Syst. 4(1), 2100139 (2022).CrossRefGoogle Scholar
Lu, Q., Feng, Y., Song, K. Y. and Zhang, W. J., “3D printable micro/macro dual driving multipede millirobot and its characterization for multi-locomotory modes,” IEEE ASME Trans. Mechatron. 28(6), 34923501 (2023).CrossRefGoogle Scholar
Zhang, T., Zhang, W. J. and Gupta, M. M., “An underactuated self-reconfigurable robot and the reconfiguration evolution,” Mech. Mach. Theory 124, 248258 (2018).CrossRefGoogle Scholar
Scharff, R. B. N., Fang, G. X., Tian, Y. J., Wu, J., Geraedts, J. M. P. and Wang, C. C. L., “Sensing and reconstruction of 3D deformation on pneumatic soft robots,” IEEE ASME Trans. Mechatron. 26(4), 18771885 (2021).CrossRefGoogle Scholar
Huo, X. M., Song, Z. H. and Sun, T., “A machine learning-based approach for automatic motion/constraint and mobility analysis of parallel robots,” Robotica (2024) online published.CrossRefGoogle Scholar
Choi, J. S. and Baek, Y. S., “A precise magnetic walking mechanism,” IEEE Trans. Robot. 30(6), 14121426 (2014).CrossRefGoogle Scholar
Cai, C. J., Xiao, X., Kalairaj, M. S., Lee, I. J. J., Mugilvannan, A. K., Yeow, B. S., Tan, J., Huang, H. and Ren, H. L., “Diversified and untethered motion generation via crease patterning from magnetically actuated caterpillar-inspired origami robot,” IEEE ASME Trans. Mechatron. 26(3), 16781688 (2021).CrossRefGoogle Scholar
Ze, Q. J., Wu, S., Nishikawa, J., Dai, J. Z., Sun, Y., Leanza, S., Zemelka, C., Novelino, L. S., Paulino, G. H. and Zhao, R. R., “Soft robotic origami crawler,” Sci. Adv. 8(13), eabm7834 (2022).CrossRefGoogle ScholarPubMed
Zhang, K. T. and Dai, J. S., “A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two,” J. Mech. Robot. 6(2), 021007 (2014).CrossRefGoogle Scholar
Jiang, Z. J. and Zhang, K. T., “Force analysis of a soft-rigid hybrid pneumatic actuator and its application in a bipedal inchworm robot,” Robotica 42(5), 14361452 (2024).CrossRefGoogle Scholar
Li, D., Dai, J. S., Zhang, Q. X. and Jin, G. G., “Structure synthesis of metamorphic mechanisms based on the configuration transformations,” Chin. J. Mech. Eng. 38(7), 1216 (2002).CrossRefGoogle Scholar
Chen, Y., Feng, H. J., Ma, J. Y., Peng, R. and You, Z., “Symmetric waterbomb origami,” Proc. R. Soc. A. 472(2190), 20150846 (2016).CrossRefGoogle ScholarPubMed
Koh, J. S. and Cho, K. J., “Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators,” IEEE ASME Trans. Mechatron. 18(2), 419429 (2013).CrossRefGoogle Scholar
Li, S. J. and Dai, J. S., “Structure synthesis of single-driven metamorphic mechanisms based on the augmented Assur groups,” ASME J. Mech. Robot. 4(3), 031004 (2012).CrossRefGoogle Scholar
Dai, J. S., Ding, X. L. and Zou, H. J., “Fundamentals and categorization of metamorphic mechanisms,” Chin. J. Mech. Eng. 41(6), 712 (2005).CrossRefGoogle Scholar
Cai, C. J., Yeow, B. S., Huang, H., Laschi, C. and Ren, H. L., “Magnetically actuated lamina emergent mechanism for bimodal crawling and flipping locomotion,” IEEE ASME Trans. Mechatron. 29(2), 15001510 (2024).CrossRefGoogle Scholar
Zhang, K. T. and Dai, J. S., “Screw-system-variation enabled reconfiguration of the Bennett Plano-spherical hybrid linkage and its evolved parallel mechanism,” ASME J. Mech. Des. 137(6), 062303 (2015).CrossRefGoogle Scholar
Yao, L. G., Gu, B., Haung, S. J., Wei, G. W. and Dai, J. S., “Mathematical modeling and simulation of the external and internal double circular-arc spiral bevel gears for the nutation drive,” ASME J. Mech. Des. 132(2), 021008 (2010).CrossRefGoogle Scholar
Wang, D. L. and Dai, J. S., “Theoretical foundation of metamorphic mechanism and its synthesis,” Chin. J. Mech. Eng. 43(8), 3242 (2007).CrossRefGoogle Scholar
Mcclintock, H., Temel, F. Z., Doshi, N., Koh, J. S. and Wood, R. J., “The milliDelta: A high-bandwidth, high-precision, millimeter-scale delta robot,” Sci. Robot. 3(14), eaar3018 (2018).CrossRefGoogle ScholarPubMed
Sun, T., . Yang, S., Huang, T. and Dai, J. S., “A way of relating instantaneous and finite screws based on the screw triangle product,” Mech. Mach. Theory 108, 7582 (2017).CrossRefGoogle Scholar
Dai, J. S. and Jones, J. R., “A linear algebraic procedure in obtaining reciprocal screw systems,” J. Robot. Syst. 20(7), 401412 (2003).CrossRefGoogle Scholar
Feng, H. J., Chen, Y., Dai, J. S. and Gogu, G., “Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations,” Mech. Mach. Theory 116, 89104 (2017).CrossRefGoogle Scholar
Gan, D. M., Liao, Q. Z., Dai, J. S., Wei, S. M. and Seneviratne, L. D., “Forward displacement analysis of the general 6-6 Stewart mechanism using Gröbner bases,” Mech. Mach. Theory 44(9), 16401647 (2009).CrossRefGoogle Scholar
Qiu, C. and Dai, J. S., “An introduction to screw theory,” In: Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach, Theory Approach 139, 1731 (2021).Google Scholar
Cao, L., Dolovich, A. T., Chen, A. and Zhang, W. J., “Topology optimization of efficient and strong hybrid compliant mechanisms using a mixed mesh of beams and flexure hinges with strength control,” Mech. Mach. Theory 121, 213227 (2018).CrossRefGoogle Scholar
Cao, L., Dolovich, A. T., Schwab, A. L., Herder, J. L. and Zhang, W. J., “Toward a unified design approach for both compliant mechanisms and rigid-body mechanisms: Module optimization,” ASME J. Mech. Des. 137(12), 12 2301 (2015).CrossRefGoogle Scholar
Yuan, P. K., Liu, J. B., Branson, D. T., Song, Z. B., Wu, S., Dai, J. S. and Kang, R. J., “Design and control of a compliant robotic actuator with parallel spring-damping transmission,” Robotica 42(4), 11131133 (2024).CrossRefGoogle Scholar
Zettl, B., Szyszkowski, W. and Zhang, W. J., “Accurate low DOF modeling of a planar compliant mechanism with flexure hinges: The equivalent beam methodology,” Precis. Eng. 29(2), 237245 (2005).CrossRefGoogle Scholar
Cui, L. and Dai, J. S., “A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact,” IEEE Trans. Robot. 26(2), 383388 (2010).CrossRefGoogle Scholar
Ding, X. L., Yang, Y. and Dai, J. S., “Topology and kinematic analysis of color-changing ball,” Mech. Mach. Theory 46(1), 6781 (2011).CrossRefGoogle Scholar
Dai, J. S., Zoppi, M. and Kong, X. W., Advances in reconfigurable mechanisms and robots I (Springer, London, 2012).CrossRefGoogle Scholar
Li, P. Y., Han, H., Liu, C. L., Ren, B., Wu, Q. W. and Xu, Z. B., “Workspace analysis of axial offset joint based on parameterization,” Robotica 41(9), 28822906 (2023).CrossRefGoogle Scholar
Bi, Z. M., Zhang, W. J., Chen, I. M. and Lang, S. Y. T., “Automated geneartion of the D-H parameters for configuration design of modular manipulators,” Robot. Comput. Integr. Manuf. 23(5), 553562 (2007).CrossRefGoogle Scholar
Bi, Z. M., Gruver, W. A., Zhang, W. J. and Lang, S. Y. T., “Automated modeling of modular robotic configurations,” Robot. Auton. Syst. 54(12), 10151025 (2006).CrossRefGoogle Scholar