Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-25T20:35:54.116Z Has data issue: false hasContentIssue false

Design and analysis of a climbing robot consisting of a parallel mechanism and a remote center of motion mechanism

Published online by Cambridge University Press:  27 December 2024

Wei Ye
Affiliation:
National and Local Joint Engineering Research Center of Reliability Analysis and Testing for Mechanical and Electrical Products, Zhejiang Sci-Tech University, Hangzhou, China
Tongwang Huo
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
Chaoxin Gong
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
Zhihong Chen*
Affiliation:
China Academy of Aerospace Science and Innovation, Beijing, China
*
Corresponding author: Zhihong Chen; Email: [email protected]

Abstract

This paper presents a climbing robot (CR) designed for the purpose of pipeline maintenance, with capability to avoid the risks inherent in manual operations. In the design process, a three degree of freedom (DOF) parallel mechanism coupled with a remote center of motion (RCM) mechanism linkage mechanism were designed to serve as the CR’s climbing mechanism, which met the specific demands for climbing movements. The modified Kutzbach–Grübler formula and the screw theory were applied to calculate the DOFs of the CR. Then, the inverse and forward position analysis for the CR was derived. Furthermore, velocity and acceleration analysis of parallel mechanism were conducted and derived the Jacobian matrix, through which the singularity of parallel mechanism was analyzed. In order to evaluate kinematic performance of parallel mechanism, the motion/force transmission index (LTI) of workspace was calculated, which directed the followed dimensional optimization process. According to the optimization result, a prototype was constructed and a series of motion experiments were carried out to validate its climbing capability.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Grieco, J. C., Prieto, M., Armad, M. and P. Gonzalez de Santos, “A six-legged climbing robot for high payloads,” In: Proceedings of the 1998 IEEE International Conference on Control Applications (Cat No 98CH36104), IEEE (1998), pp. 446450.Google Scholar
Jalal, A., Kant, R., Kumar, A. and Kumar, V., “Pipe climbing robot,” (2022), arXiv preprint arXiv: 2201.07865.Google Scholar
Kim, J.-H., Lee, J.-C. and Choi, Y.-R., “PiROB: vision-based pipe-climbing robot for spray-pipe inspection in nuclear plants,” Int. J. Adv. Robot. Syst. 15(6), 1729881418817974 (2018).CrossRefGoogle Scholar
Saunders, A., Goldman, D. I., Full, R. J. and Buehler, M., “The rise climbing robot: Body and leg design,” In: Unmanned Systems Technology VIII (SPIE, 2006) pp. 401413.Google Scholar
Minor, M., Dulimarta, H., Danghi, G., Mukherjee, R., Lal Tummala, R. and Aslam, D., “Design, implementation, and evaluation of an under-actuated miniature biped climbing robot,” In: Proceedings 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat No 00CH37113) (IEEE, 2000) pp. 19992005.CrossRefGoogle Scholar
Baghani, A., Ahmadabadi, M. N. and Harati, A., “Kinematics modeling of a wheel-based pole climbing robot (UT-PCR),” In: Proceedings of the 2005 IEEE international Conference on Robotics and Automation (IEEE, 2005) pp. 20992104.CrossRefGoogle Scholar
Ahmadabadi, M. N., Moradi, H., Sadeghi, A., A. Madani and M. Farahnak, “The evolution of UT pole climbing robots,” In: 1st International Conference on Applied Robotics for the Power Industry (IEEE, 2010) pp. 16.CrossRefGoogle Scholar
Hosseini, H., Najafi, H., Mehrabadi, M., Gholamian, B., Noroozi, S., Ahmadi, M., Ziafati Kafi, Z., Sadri, N., Hojabr Rajeoni, A. and Ghalyanchilangeroudi, A., “Molecular detection of fowl adenovirus 7 from slaughtered broiler chickens in Iran: The first report,” Iran. J. Vet. Res. 22(3), 244247 (2021).Google ScholarPubMed
Yuan, C., Chang, Y., Song, Y., Lin, S. and Jing, F., “Design and analysis of a negative pressure wall-climbing robot with an omnidirectional characteristic for cylindrical wall,” Robotica, 42(7), 22262242 (2024).CrossRefGoogle Scholar
Kushihashi, Y., Yoshikawa, K., Imai, K., Terashima, A. and Miwa, Y., “Development of Tree Climbing and Pruning Robot, Woody-1,” In: Proc JSME Conf on Robotics and Mechatronics (Tokyo, 2006).Google Scholar
Kawasaki, H., Murakami, S., Kachi, H. and Ueki, S., “Novel climbing method of pruning robot,” In: 2008 SICE Annual Conference (IEEE, 2008) pp. 160163.CrossRefGoogle Scholar
Saltaren, R., Aracil, R., Reinoso, O. and Scarano, M. A., “Climbing parallel robot: A computational and experimental study of its performance around structural nodes,” IEEE Trans. Robot. 21(6), 10561066 (2005).CrossRefGoogle Scholar
Saltarén, R., Aracil, R., Sabater, J., Reinoso, O. and Jimenez, L. M., “Modelling, Simulation and Conception of Parallel Climbing Robots for Construction and Service,” In: 2nd Int Workshop & Conf on CLIMBING & WALKING ROBOTS (CLAWAR) (1999).Google Scholar
Tavakoli, M., Marques, L. and Almeida, A. T., “Self calibration of step-by-step based climbing robots,” In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2009) pp. 32973303.CrossRefGoogle Scholar
Tavakoli, M., Marques, L. and De Almeida, A. T., “A low-cost approach for self-calibration of climbing robots,” Robotica 29(1), 2334 (2011).CrossRefGoogle Scholar
Tavakoli, M., Lopes, P., Sgrigna, L. and Viegas, C., “Motion control of an omnidirectional climbing robot based on dead reckoning method,” Mechatronics 30, 94106 (2015).CrossRefGoogle Scholar
Eto, H. and Asada, H. H., “Development of a wheeled wall-climbing robot with a shape-adaptive magnetic adhesion mechanism,” In: 2020 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2020) pp. 93299335.CrossRefGoogle Scholar
Lauria, M., Piguet, Y. and Siegwart, R., “Octopus:, an autonomous wheeled climbing robot,” In: Proceedings of the Fifth International Conference on Climbing and Walking Robots (CLAWAR’02) (2002) pp. 315322.Google Scholar
Noohi, E., Mahdavi, S. S., Baghani, A. and Ahmadabadi, M. N., “Wheel-based climbing robot: Modeling and control,” Adv. Robot. 24(8-9), 13131343 (2010).CrossRefGoogle Scholar
Jiang, L., Guan, Y., Zhou, X., Zhang, X. and Zhang, H., “Grasping analysis for a biped climbing robot,” In: IEEE International Conference on Robotics and Biomimetics (IEEE, 2010) pp. 579584.CrossRefGoogle Scholar
Guan, Y., Jiang, L., Zhu, H.C., Zhou, X.Cai, C. and Wu, W., “A modular bio-inspired biped climbing robot,” In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2011) pp. 14731478.CrossRefGoogle Scholar
Guan, Y., Jiang, L., Zhang, X. and Zhang, H., “Climbing gaits of a modular biped climbing robot,” In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2009) pp. 532537.CrossRefGoogle Scholar
Hong, S., Pei-Sun, M. A. and Guang-Rong, W., “An inchworm locomotion gait based on serpenoid curve for snakelike robot,” Mach. Design Res. (2008) 24(1):394150.Google Scholar
Shukui, H., Bin, W. and Ren, D., “Design and motion of a redundant snake robot,” In: International Conference on Measuring Technology & Mechatronics Automation, Changsha, China, (IEEE, 2010), vol. 1, pp. 962–965.CrossRefGoogle Scholar
Hong, S., Peisun, M. and Guangrong, W., “Inchworm locomotion gait for snakelike robot,” J. Southeast Univ. 23(4), 556560 (2007).Google Scholar
Wilson, M., Sabater, Jé M., Saltarén, R. J., Aracil, R., Yime, E. and Azorín, Jé M., “Teleoperated parallel climbing robots in nuclear installations,” Ind. Robot Int. J. 33(5), 381386 (2006).Google Scholar
Pacheco Quiñones, D., Maffiodo, D. and Laribi, A., “Kinematic analysis, workspace definition, and self-collision avoidance of a quasi-spherical parallel manipulator,” Robotica, 126 (2024).CrossRefGoogle Scholar
Huang, Z., Li, Q. and Ding, H., Theory of Parallel Mechanisms, vol. 6 (Springer, Dordrecht Heidelberg New York London, 2013).CrossRefGoogle Scholar
Minguzzi, E., “A geometrical introduction to screw theory,” Eur. J. Phys. 34(3), 613632 (2013).CrossRefGoogle Scholar
Ball, R. S., “The theory of screws: A study in the dynamics of a rigid body,” Math. Ann. 9(4), 541553 (1876).CrossRefGoogle Scholar
Davidson, J. K., Hunt, K. H. and Pennock, G. R., “Robots and screw theory: Applications of kinematics and statics to robotics,” J. Mech. Des. 126(4), 763764 (2004).CrossRefGoogle Scholar
Fearnley-Sander, D., “Hermann Grassmann and the creation of linear algebra,” Am. Math. Monthly 86(10), 809817 (1979).CrossRefGoogle Scholar
Merlet, J.-P., “Singular configurations of parallel manipulators and Grassmann geometry,” Int. J. Robot. Res. 8(5), 4556 (1989).CrossRefGoogle Scholar
Wei, J., Yu, B., Liu, C., Song, J., Zhang, J. and Meng, C., “Grassmann line geometry based configuration synthesis of equivalent Uu parallel mechanisms with two virtual center-of-motion,” Mech. Mach. Theory 181, 105208 (2023).CrossRefGoogle Scholar
Wang, J., Wu, C. and Liu, X.-J., “Performance evaluation of parallel manipulators: Motion/force transmissibility and its index,” Mech. Mach. Theory 45(10), 14621476 (2010).CrossRefGoogle Scholar
Xie, F., Liu, X.-J. and Wang, J., “Performance evaluation of redundant parallel manipulators assimilating motion/force transmissibility,” Int. J. Adv. Robot. Syst. 8(5), 66 (2011).CrossRefGoogle Scholar
Chen, X., Liu, X.-J., Xie, F. G. and Sun, T., “A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: The sprint Z3 and A3 tool heads,” Int. J. Adv. Robot. Syst. 11(1), 5 (2014).CrossRefGoogle Scholar
Yang, C., Ye, W. and Li, Q., “Review of the performance optimization of parallel manipulators,” Mech. Mach. Theory 170, 104725 (2022).CrossRefGoogle Scholar
Liu, X.-J. and Wang, J., “A new methodology for optimal kinematic design of parallel mechanisms,” Mech. Mach. Theory 42(9), 12101224 (2007).CrossRefGoogle Scholar
Lou, Y., Liu, G., Xu, J., and Li, Z., “A general approach for optimal kinematic design of parallel manipulators,” In: IEEE International Conference on Robotics and Automation, 2004 Proceedings ICRA’04 2004 (IEEE, 2004) pp. 36593664.CrossRefGoogle Scholar
Liu, X.-J., Wang, J. and Pritschow, G., “On the optimal kinematic design of the PRRRP 2-DoF parallel mechanism,” Mech. Mach. Theory 41(9), 11111130 (2006).CrossRefGoogle Scholar
Lou, Y., Zhang, Y., Huang, R., Chen, X. and Li, Z., “Optimization algorithms for kinematically optimal design of parallel manipulators,” IEEE Trans. Autom. Sci. Eng. 11(2), 574584 (2013).CrossRefGoogle Scholar