Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T13:27:19.817Z Has data issue: false hasContentIssue false

Design, analysis, and testing of a motor-driven capsule robot based on a sliding clamper

Published online by Cambridge University Press:  17 August 2015

Jinyang Gao*
Affiliation:
Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, P. R. China
Guozheng Yan
Affiliation:
Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, P. R. China
Su He
Affiliation:
Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, P. R. China
Fei Xu
Affiliation:
Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, P. R. China
Zhiwu Wang
Affiliation:
Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, P. R. China
*
*Corresponding author. E-mail: [email protected]

Summary

We propose a motor-driven capsule robot based on a sliding clamper (MCRSC), a device to explore the partially collapsed and winding intestinal tract. The MCRSC is powered by wireless power transmission based on near-field inductive coupling. It comprises a novel locomotion unit, a camera, and a three-dimensional receiving coil, all installed at both ends of the locomotion unit. The novel locomotion unit comprises a linear motion mechanism and a sliding clamper. The former adopts a pair of lead-screw and nut to obtain linear motion, whereas the latter anchors the MCRSC to a specific point of the intestinal tract by expanding its arc-shaped legs. The MCRSC is capable of two-way locomotion, which is activated by alternately executing linear motion and anchoring action. Ex vivo experiments have shown that the MCRSC is able to inspect the colon within a time frame of standard colonoscopy.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iddan, G., Meron, G., A. Glukhovsky and P. Swain, “Wireless capsule endoscopy,” Nature 405, 417418 (2000).Google Scholar
2. Angelita, H. and Waye, J. D., “Complications and hazards of gastrointestinal endoscopy,” World J. Surg. 13 (2), 193201(1989).Google Scholar
3. Westerhof, J., Weersman, R. and Koornstra, J., “Risk factors for incomplete small-bowel capsule endoscopy,” Gastrointest. Endos. 69 (1), 7480 (2009).Google Scholar
4. Ciuti, G., Menciassi, A. and Dario, P., “Capsule endoscopy: From current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 5972 (2011).Google Scholar
5. Yim, S. and Sitti, M., “Design and rolling locomotion of a magnetically actuated soft capsule endoscope,” IEEE Trans. Robot. 28 (1), 183194 (2012).Google Scholar
6. Yim, S., Goyal, K. and Sitti, M., “Magnetically actuated soft capsule with the multimodal drug release function,” IEEE/ASME Trans. Mechatron. 18 (4), 14131418 (2013).Google Scholar
7. Yim, S., Gultepe, E., Gracias, D. H. and Sitti, M., “Biopsy using a magnetic capsule endoscope carrying, releasing and retrieving untethered micro-grippers,” IEEE Trans. Biomed. Eng. 61 (2), 513521 (2014).Google Scholar
8. Zhou, H., Alici, G., Than, T. D. and Li, W., “Modeling and experimental investigation of rotational resistance of a spiral-type robotic capsule inside a real intestine,” IEEE/ASME Trans. Mechatron. 18 (5), 15551562 (2013).CrossRefGoogle Scholar
9. Lien, G., Liu, C., Jiang, J., Chuang, C. and Teng, M., “Magnetic control system targeted for capsule endoscopic operations in the stomach-design, fabrication, and in vitro and ex vivo evaluations,” IEEE Trans. Biomed. Eng. 59 (7), 20682079 (2012).Google Scholar
10. Gumprecht, J. D., Lueth, T. C. and Khamesee, M. B., “Navigation of a robotic capsule endoscope with a novel ultrasound tracking system,” Microsyst. Technol. 19 (9–10), 14151423 (2013).Google Scholar
11. Harada, K., Oetomo, D., Susilo, E., Menciassi, A., Daney, D., Merlet, J. and Dario, P., “A reconfigurable modular robotic endoluminal surgical system: Vision and preliminary results,” Robotica 28 (2), 171183 (2010).Google Scholar
12. Valdastri, P., Webster, R. J., Quaglia, C., Quirini, M., Menciassi, A. and Dario, P., “A new mechanism for mesoscale legged locomotion in compliant tubular environments,” IEEE Trans. Robot. 25 (5), 10471057 (2009).CrossRefGoogle Scholar
13. Quirini, M., Menciassi, A., Scapellato, S., Dario, P., Rieber, F., Ho, C., Schostek, S. and Schurr, M. O., “Feasibility proof of a legged locomotion capsule for the GI tract,” Gastrointest. Endosc. 67 (7), 11531158 (2008).Google Scholar
14. Kim, H. M., Yang, S., Kim, J., Park, S., Cho, J. H., Park, J. Y., Kim, T. S., Yoon, E., Song, S. Y. and Bang, S., “Active locomotion of a paddling-based capsule endoscope in in vitro and in vivo experiments,” Gastrointest. Endosc. 72 (2), 381387 (2010).Google Scholar
15. Dario, P., Carrozza, M. C., Lencioni, L., Magnani, B. and Attanasio, S. D., “A Micro Robotic System for Colonoscopy,” In: Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM (Apr. 20–25, 1997), Vol. 2, pp. 1567–1572.Google Scholar
16. Dario, P., Ciarletta, P., Menciassi, A. and Kim, B., “Modeling and experimental validation of the locomotion of endoscopic robots in the colon,” Int. J. Robot. Res. 23 (4–5), 549556 (2004).Google Scholar
17. Karagozler, M., Cheung, E., Kwon, J. and Sitti, M., “Miniature Endoscopic Capsule Robot Using Biomimetic Micro-Patterned Adhesives,” In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatron.'06 (BioRob'06), IEEE, Pisa (Feb. 20–22, 2006), pp. 105–111.Google Scholar
18. Lin, W., Shi, Y., Jia, Z. and Yan, G., “Design of a wireless anchoring and extending micro robot system for gastrointestinal tract,” Int. J. Med. Robot. Comp. 9 (2), 167179 (2013).Google Scholar
19. Chen, W., Yan, G., Wang, Z., Jiang, P. and Liu, H., “A wireless capsule robot with spiral legs for human intestine,” Int. J. Med. Robot. Comp. 10 (2), 147161 (2014).Google Scholar
20. Chen, W., Yan, G., He, S., Ke, Q., Wang, Z., Liu, H. and Jiang, P., “Wireless powered capsule endoscopy for colon diagnosis and treatment,” Physiol. Meas. 34 (11), 15451561 (2013).Google Scholar
21. Sliker, L. J., Kern, M. D., Schoen, J. A. and Rentschler, M. E., “Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads,” Surg. Endosc. 26 (10), 28622869 (2012).Google Scholar
22. Quirini, M., Menciassi, A., Scapellato, S., Stefanini, C. and Dario, P., “Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract,” IEEE/ASME Trans. Mechatron. 13 (2), 169179 (2008).Google Scholar
23. Simi, M., Valdastri, P., Quaglia, C., Menciassi, A. and Dario, P., “Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration,” IEEE/ASME Trans. Mechatron. 15 (2), 170180 (2010).Google Scholar
24. Jia, Z., Yan, G., Wang, Z. and Liu, H., “Efficiency optimization of wireless power transmission systems for active capsule endoscopes,” Physiol. Meas. 32 (10), 15611573 (2011).Google Scholar
25. Terry, B. S., Passernig, A. C., Hill, M. L., Schoen, J. A. and Rentschler, M. E., “Small intestine mucosal adhesivity to in vivo capsule robot materials,” J. Mech. Behav. Biomed. 15, 2432 (2012).Google Scholar
26. Kern, M. D., Alcaide, J. O. and Rentschler, M. E., “Soft material adhesion characterization for in vivo locomotion of robotic capsule endoscopes: Experimental and modeling results,” J. Mech. Behav. Biomed. 39, 257269 (2014).Google Scholar
27. Shenzhen Winner Mechanical and Electrical Co., (Feb. 2015). [Online]. Available at: http://www.autotrd.com/sell/show.php?itemid=1316 Google Scholar
28. Park, S., Koo, K., Bang, S. M., Park, J. Y., Song, S. Y. and Cho, D. D., “A novel microactuator for microbiopsy in capsular endoscopes,” J. Micromech. Microeng. 18 (2), 19 (2008) 025032.Google Scholar
29. Woods, S. P. and Constandinou, T. G., “Wireless capsule endoscope for targeted drug delivery: Mechanics and design considerations,” IEEE Trans. Biomed. Eng. 60 (4), 945953 (2013).Google Scholar
30. Graaff, V. D. and Marshall, K., Human Anatomy (McGraw-Hill, New York, NY, 2002).Google Scholar
31. Zhang, C., Liu, H., Tan, R. and Li, H., “Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine,” Tribol. Lett. 47 (2), 295301 (2012).Google Scholar
32. Xu, F. and Li, Q., Precision Machine Design (Tsinghua University Press, Beijing, China, 2005).Google Scholar
33. Carta, R., Tortora, G., Thone, J., Lenaerts, B., Valdastri, P., Menciassi, A., Dario, P. and Puers, R., “Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection,” Biosens. Bioelectron. 25 (4), 845851 (2009).Google Scholar
34. Ciarletta, P., Dario, P., Tendick, F. and Micera, S., “Hyperelastic model of anisotropic fiber reinforcements within intestinal walls for applications in medical robotics,” Int. J. Robot. Res. 28 (10), 12791288 (2009).Google Scholar
35. Bellini, C., Glass, P., Sitti, M. and Martino, ES. Di., “Biaxial mechanical modeling of the small intestine,” J. Mech. Behav. Biomed. 4 (8), 17271740 (2011).CrossRefGoogle ScholarPubMed
36. Zarrouk, D., Sharf, I. and Shoham, M., “Analysis of wormlike robotic locomotion on compliant surfaces,” IEEE Trans. Biomed. Eng. 58 (2), 301309 (2011).Google Scholar
37. Hoeg, H. D., Slatkin, A. B., Burdick, J. W. and Grundfest, W. S., “Biomechanical Modeling of the Small Intestine as Required for the Design and Operation of a Capsule Robot,” In: Proceedings of the IEEE International Conference on Robotic Automation, IEEE, San Francisco, CA (Apr. 24–28, 2000), Vol. 2, pp. 1599–1606.Google Scholar
38. Miftahof, R. N., “The wave phenomena in smooth muscle syncytia,” In. Silico. Biol. 5 (5), 478498 (2005).Google Scholar
39. Gao, P., Yan, G., Wang, Z., Jiang, P. and Liu, H., “Microgroove cushion of robotic endoscope for active locomotion in the gastrointestinal tract,” Int. J. Med. Robot. Comp. 8 (4), 398406 (2012).Google Scholar