Published online by Cambridge University Press: 09 March 2009
This paper presents two adaptive schemes for controlling the end-effector compliance of robot manipulators. Each controller possesses a decentralized structure, in which the control input for each configuration degree-offreedom (DOF) is computed based on information concerning only that DOF. The first scheme is developed using an adaptive impedance control approach and consists of two subsystems: a simple “filter” which modifies the end-effector position trajectory based on the sensed contact force and the desired dynamic relationship between the position and force, and an adaptive controller that produces the joint torques required to track this modified trajectory. The second compliant motion control strategy is an adaptive admittance controller for position-controlled manipulators. In this scheme a desired contact force is specified and then position setpoints for the “inner-loop” position controller are generated which ensure that this desired force is achieved. The proposed controllers are extremely simple computationally, do not require knowledge of the manipulator dynamic model or parameter values of the manipulator or the environment, and are implemented in decentralized form.