Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T23:13:45.607Z Has data issue: false hasContentIssue false

Coordinated control of a 3DOF cartesian robot and a shape memory alloy-actuated flexible needle for surgical interventions: a non-model-based control method

Published online by Cambridge University Press:  22 October 2021

Fan Liang
Affiliation:
Tianjin Key Laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, China Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
Bryan J. Traughber
Affiliation:
Department of Radiation Oncology, Pennsylvania State University, Hershey, PA 17033, USA
Tithi Biswas
Affiliation:
Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
Gordon Guo
Affiliation:
Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
Raymond F. Muzic
Affiliation:
Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Tarun K. Podder*
Affiliation:
Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
*
*Corresponding author. E-mail: [email protected]

Summary

Success of any needle-based medical procedures depends on accurate placement of the needle at the target location. However, accurate targeting and control of flexible self-actuating (active) needle are challenging. We have developed a shape memory alloy-actuated flexible needle steered by a 3D Cartesian robot and performed a comparative study of four, non-model-based, coordinated control methodologies for the combined robot steering and flexible-needle insertion process for surgical interventions. Investigated four controllers are: proportional–integral–derivative (PID), PID with the cubic of positional error term (PID-P3), static PID sliding mode controller, and robust adaptive PID sliding mode controller (RAPID-SMC). Relative efficacies of these controllers are demonstrated by performing experiements using a tissue-mimicking soft material phantom. Results from experiments have reavealed that RAPID-SMC is superior to other three controllers.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adebar, T. K., Fletcher, A. E. and Okamura, A. M., “3-D ultrasound-guided robotic needle steering in biological tissue,” IEEE Trans. Biomed. Eng. 61, 28992910 (2014).10.1109/TBME.2014.2334309CrossRefGoogle ScholarPubMed
Ayvali, E., Liang, C.P., Ho, M., Chen, Y. and Desai, J.P., “Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures,” Int. J. Robot. Res. 31, 588603 (2012).10.1177/0278364912442429CrossRefGoogle ScholarPubMed
van de Berg, N. J., van Gerwen, D. J., Dankelman, J. and van den Dobbelsteen, J. J., “Design choices in needle steering—A Review,” IEEE/ASME Trans. Mechatron. 20, 21722183 (2015)10.1109/TMECH.2014.2365999CrossRefGoogle Scholar
Bernardes, M. C., Adorno, B. V., Poignet, P., Zemiti, N. and Borges, G. A., IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept. 2011 (2011) pp. 25452550.Google Scholar
Bobrenkov, O., Lee, J. and Park, W., “A new geometry-based plan for inserting flexible needles to reach multiple targets,” Robotica 32(6), 9851004 (2014). doi: 10.1017/S0263574713001161.CrossRefGoogle Scholar
Datla, N. V., Konh, B., Koo, J. J., Choi, D. J., Yu, Y., Dicker, A. P., Podder, T. K., Darvish, K. and Hutapea, P., “Polyacrylamide phantom for self-actuating needle-tissue interaction studies,” Med. Eng. Phys. 36, 140145 (2014).10.1016/j.medengphy.2013.07.004CrossRefGoogle ScholarPubMed
DiMaio, S.P. and Salcudean, S.E., “Needle steering and motion planning in soft tissues,” IEEE Trans. Biomed. Eng. 52, 965974 (2005).10.1109/TBME.2005.846734CrossRefGoogle ScholarPubMed
Duindam, V., Xu, J., Alterovitz, R., Sastry, S. and Goldberg, K., “Three-dimensional motion planning algorithms for steerable needles using inverse kinematics,” Int. J. Robot. Res. 29, 789–800 (2010).Google Scholar
Dupont, P. E., Lock, J., Itkowitz, B. and Butler, E., “Design and control of concentric-tube robots,” IEEE Trans. Robot. 26, 209225 (2010).10.1109/TRO.2009.2035740CrossRefGoogle ScholarPubMed
Ge, S. S., Lee, T. H. and Harris, C. J., Adaptive Neural Network Control of Robotic Manipulators (World Scientific, 1998).10.1142/3774CrossRefGoogle Scholar
Glozman, D. and Shoham, M., Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004: 7th International Conference, Saint-Malo, France, September 26-29, 2004. Proceedings, Part II, (Barillot, C., et al., eds.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp 137144.10.1007/978-3-540-30136-3_18CrossRefGoogle Scholar
Glozman, D. and Shoham, M., “Image-guided robotic flexible needle steering,” IEEE Trans. Robot. 23, 459467 (2007).10.1109/TRO.2007.898972CrossRefGoogle Scholar
Henken, K., Van Gerwen, D., Dankelman, J. and Van Den Dobbelsteen, J., Accuracy of needle position measurements using fiber Bragg gratings, Minimally Invasive Therapy & Allied Technologies: MITAT: Official Journal of the Society for Minimally Invasive Therapy 21, 408414 (2012).10.3109/13645706.2012.666251CrossRefGoogle ScholarPubMed
Hill, J. R., Wang, K. W. and Roh, J.-H., vol. 7286, 728609728609 (2009).Google Scholar
Hing, J. T., Brooks, A. D. and Desai, J. P., Robotics Research: Results of the 12th International Symposium ISRR (Thrun, S., et al., eds.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007) pp 34–48.Google Scholar
Huo, B., Zhao, X., Han, J. and Xu, W., Closed-loop control of bevel-tip needles based on path planning,” Robotica, 36(12), 1857–1873 (2018). doi: 10.1017/S0263574718000772.Google Scholar
Joseph, F. O. M., Hutapea, P., Dicker, A., Yu, Y. and Podder, T., 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25–29 Aug. 2015 2015) pp. 36633666.Google Scholar
Ko, S. Y., Davies, B. L. and Baena, F. R., 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 18–22 Oct. 2010 (2010) pp. 2319–2324.Google Scholar
Ko, S. Y., Frasson, L. and Baena, F. R., “Closed-loop planar motion control of a steerable probe with a “Programmable Bevel”; Inspired by nature,” IEEE Trans. Robot. 27, 970–983 (2011).Google Scholar
Konh, B., Sasaki, D., Podder, T. and Ashrafiuon, H., “3D manipulation of an active steerable needle via actuation of multiple SMA wires,” Robotica 38(3), 410426 (2020). doi: 10.1017/S0263574719000705.CrossRefGoogle Scholar
Lyons, L. A., Webster, R. J. and Alterovitz, R., IEEE/RSJ International Conference on Intelligent Robots and Systems,10–15 Oct. 2009, pp 801866.Google Scholar
Majewicz, A., Siegel, J. J., Stanley, A. A. and Okamura, A. M., 2014 IEEE International Conference on Robotics and Automation (ICRA),May 31 2014-June 7 2014 2014) pp 58835888.Google Scholar
Maria Joseph, F., Kumar, M., Franz, K., Hutapea, P., Dicker, D. A., Zhao, Y., Zhao, Y. Y. and Podder, T., “Control of shape memory alloy actuated flexible needle using multimodal sensory feedbacks,” J. Automat. Cont. Eng. 3, 7 (2014).Google Scholar
Maria Joseph, F. and Podder, T., “Sliding mode control of a shape memory alloy actuated active flexible needle,” Robotica 36, 11881205 (2018).10.1017/S0263574718000334CrossRefGoogle Scholar
Neubach, Z. and Shoham, M., “Ultrasound-guided robot for flexible needle steering,” IEEE Trans. Biomed. Eng. 57, 799–805 (2010).Google Scholar
Podder, T. K., Dicker, A. P., Hutapea, P., Darvish, K. and Yu, Y., “A novel curvilinear approach for prostate seed implantation,” Med. Phys. 39, 1887–1892 (2012).Google Scholar
Podder, T. K., Beaulieu, L., Caldwell, B., Cormack, R. A., Crass, J. B., Dicker, A. P., Fenster, A., Fichtinger, G., Meltsner, M. A., Moerland, M. A., Nath, R., Rivard, M., Salcudian, T., Song, D. Y., Thomadsen, B. R. and Yu, Y., “AAPM and GEC-ESTRO Guidelines for Image-guided Robotic Brachytherapy: Report of task group 192,” Med Phys 41, 101501, 127 (2014).10.1118/1.4895013CrossRefGoogle ScholarPubMed
Prahlad, H. and Chopra, I., “Development of a strain-rate dependent model for uniaxial loading of SMA wires,” J. Intell. Mater. Syst. Struct. 14, 429442 (2003).10.1177/1045389X03034930CrossRefGoogle Scholar
Rucker, D. C., Das, J., Gilbert, H. B., Swaney, P. J., Miga, M. I., Sarkar, N. and Webster, R. J., “Sliding mode control of steerable needles,” IEEE Trans. Robot. 29, 12891299 (2013).10.1109/TRO.2013.2271098CrossRefGoogle ScholarPubMed
Ruiz, B., Hutapea, P., Darvish, K., Dicker, A., Yu, Y. and Podder, T., “Development of shape memory alloy actuated flexible needle control system for prostate brachytherapy,” Med. Phys. 40, 467 (2013).10.1118/1.4815501CrossRefGoogle Scholar
Ruiz, B., Hutapea, P., Darvish, K., Dicker, A., Yu, Y. and Podder, T. K., IEEE-International Conference on Robotics and Automation, Needle Steering Workshop, (2012).Google Scholar
Ruiz, B., Leu, S. and Podder, T., “Dosimetric effects of needle tip localization errors in prostate brachytherapy,” Med. Phys. 39, 3933 (2012).10.1118/1.4736050CrossRefGoogle Scholar
Ryu, S. C., Renaud, P., Black, R. J., Daniel, B. L. and Cutkosky, M. R., 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,25-30 Sept. 2011 (2011) pp. 2564–2569.Google Scholar
Slotine, J. J. E. and Li, W., Applied Nonlinear Control (Prentice Hall, 1991).Google Scholar
Songye, Z. and Yunfeng, Z., “A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence,” Smart Mater. Struct. 16, 1696 (2007).Google Scholar
Swaney, P. J., Burgner, J., Gilbert, H. B. and Webster, R. J., A flexure-based steerable needle: High curvature with reduced tissue damage,” IEEE Trans. Biomed. Eng. 60, 906–909 (2013).Google Scholar
Webster, R. J., Kim, J. S., Cowan, N. J., Chirikjian, G. S. and Okamura, A. M., “Nonholonomic modeling of needle steering,” Int.J. Robot. Res. 25, 509525 (2006).10.1177/0278364906065388CrossRefGoogle Scholar
Webster, R. J., Romano, J. M. and Cowan, N. J., “Mechanics of precurved-tube continuum robots,” IEEE Trans. Robot. 25(1), 6778 (2009).10.1109/TRO.2008.2006868CrossRefGoogle Scholar
Wedlick, T. R. and Okamura, A. M. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 24–27 June 2012 (2012) pp. 6268.Google Scholar
Yan, K. G., Podder, T., Yu, Y., Liu, T. I., Cheng, C. W. S. and Ng, W. S., “Flexible needle-tissue interaction modeling with depth-varying mean parameter: Preliminary study,” IEEE Trans. Biomed. Eng. 56, 255262 (2009).Google ScholarPubMed