Published online by Cambridge University Press: 22 March 2022
With many micromanipulator designs emerging in micro and nanosystem applications, the element of compliance in the mechanisms is gaining attention. Several designs consider motions limited in a plane for high accuracy and repeatability as needed in micro/nano manipulation applications. Extending this to a full spatial configuration with coupled motions of series and parallel linkages with flexure joints of 1-degree-of-freedom (DOF) and 3-DOF needs a systematic analytical approach. One such approach for compliance analysis is presented in this article for a mechanism designed at Indian Institute of Technology Kharagpur. To validate the analytical models, finite element analysis simulations are performed with the help of the Abaqus-6.14 software package. Following the successful validation, the effect of structural parameters on the performance is presented with the help of the analytical expressions. We explore the performance of the mechanism with different dimensions of flexures of a particular type. Results indicate that the design with dissimilar dimensional parameters can give superior performance.