Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T22:32:48.131Z Has data issue: false hasContentIssue false

Comparison of Sprinting With and Without Running-Specific Prostheses Using Optimal Control Techniques

Published online by Cambridge University Press:  02 July 2019

Anna Lena Emonds*
Affiliation:
Optimization, Robotics and Biomechanics, Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany. E-mail: [email protected]
Johannes Funken
Affiliation:
Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany. E-mails: [email protected], [email protected]
Wolfgang Potthast
Affiliation:
Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany. E-mails: [email protected], [email protected]
Katja Mombaur
Affiliation:
Optimization, Robotics and Biomechanics, Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany. E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of our study was to get deeper insights into sprinting with and without running-specific prostheses and to perform a comparison of the two by combining analysis of known motion capture data with mathematical modeling and optimal control problem (OCP) findings. We established rigid multi-body system models with 14 bodies and 16 degrees of freedom in the sagittal plane for one unilateral transtibial amputee and three non-amputee sprinters. The internal joints are powered by torque actuators except for the passive prosthetic ankle joint which is equipped with a linear spring–damper system. For each model, the dynamics of one sprinting trial was reconstructed by solving a multiphase least squares OCP with discontinuities and constraints. We compared the motions of the amputee athlete and the non-amputee reference group by computing characteristic criteria such as the contribution of joint torques, the absolute mechanical work, step frequency and length, among others. By comparing the amputee athlete with the non-amputee athletes, we found reduced activity in the joints of the prosthetic limb, but increased torques and absolute mechanical work in the arms. We also compared the recorded motions to synthesized motions using different optimality criteria and found that the recorded motions are still far from the optimal solutions for both amputee and non-amputee sprinting.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Copyright
© Cambridge University Press 2019

References

Brüggemann, G.-P., Arampatzis, A., Emrich, F. andPotthast, W., “Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses,” Sports Technol. 1(4–5), 220227 (2008).10.1080/19346182.2008.9648476CrossRefGoogle Scholar
Weyand, P. G., Bundle, M. W., McGowan, C. P., Grabowski, A., Brown, M. B., Kram, R. and Herr, H., “The fastest runner on artificial legs: different limbs, similar function?J. Appl. Physiol. 107(3), 903911 (2009).10.1152/japplphysiol.00174.2009CrossRefGoogle ScholarPubMed
Burkett, B., McNamee, M. and Potthast, W., “Shifting boundaries in sports technology and disability: equal rights or unfair advantage in the case of oscar pistorius?Disabil. Soc. 26(5), 643654 (2011).10.1080/09687599.2011.589197CrossRefGoogle Scholar
McGowan, C. P., Grabowski, A., Brown, M. B., Kram, R. and Herr, H., “Counterpoint: Artificial legs do not make artificially fast running speeds possible,” J. Appl. Physiol. 108(4), 10121014 (2010).Google Scholar
Wank, V. and Keppler, V., “Vor- und Nachteile von Sportlern mit Hochleistungsprothesen im Vergleich zu nichtbehinderten Athleten,” Deutsche Zeitschrift für Sportmedizin 66(11), 287293 (2015).10.5960/dzsm.2015.204CrossRefGoogle Scholar
Weyand, P. G. and Bundle, M. W., “Point: Artificial legs do make artificially fast running speeds possible,” J. Appl. Physiol. 108(4), 10111012 (2010).10.1152/japplphysiol.01238.2009CrossRefGoogle ScholarPubMed
Mombaur, K., “A mathematical study of sprinting on artificial legs,” In: Modeling, Simulation and Optimization of Complex Processes - HPSC 2012 (Springer International Publishing, Cham, 2014) pp.157168.Google Scholar
Strutzenberger, G., Brazil, A., von Lieres und Wilkau, H., Davies, D., Funken, J., Müller, R., Excell, T., Willson, C., Willwacher, S., Potthast, W., Schwameder, H. and Irwin, G., “1st and 2nd step characteristics proceeding the sprint start in amputee sprinting,” 34th International Conference on Biomechanics in Sports, Tsukuba, Japan (2016) pp. 964967.Google Scholar
Taboga, P., Grabowski, A. M., di Prampero, P. E. and Kram, R., “Optimal starting block configuration in sprint running: A comparison of biological and prosthetic legs,” J. Appl. Biomech. 30(3), 381389 (2014).10.1123/jab.2013-0113CrossRefGoogle ScholarPubMed
Willwacher, S., Herrmann, V., Heinrich, K., Funken, J., Strutzenberger, G., Goldmann, J.-P., Braunstein, B., Brazil, A., Irwin, G., Potthast, W. and Brüggemann, G.-P., “Sprint start kinetics of amputee and non-amputee sprinters,” PLoS ONE 11(11), e0166219 (2016).10.1371/journal.pone.0166219CrossRefGoogle ScholarPubMed
Funken, J., Heinrich, K., Willwacher, S., Müller, R. and Potthast, W., “Amputation side and site determine the performance capacity in paralympic curve sprinting,” 34th International Conference on Biomechanics in Sports, Tsukuba, Japan (2016) pp. 589592.Google Scholar
Hobara, H., Kobayashi, Y. and Mochimaru, M., “Spatiotemporal Variables of Able-Bodied and Amputee Sprint in Men’s 100-m Sprint,” Int. J. Sports Med. 36, 494497 (2015).Google ScholarPubMed
Mann, R. V., “A kinetic analysis of sprinting,” Med. Sci. Sports Exercise 13(5), 325328 (1981).10.1249/00005768-198105000-00010CrossRefGoogle ScholarPubMed
Hobara, H., Baum, B. S., Kwon, H.-J., Miller, R. H., Ogata, T., Kim, Y. H. and Shim, J. K., “Amputee locomotion: Spring-like leg behavior and stiffness regulation using running-specific prostheses,” J. Biomech. 46, 24832489 (2013).10.1016/j.jbiomech.2013.07.009CrossRefGoogle ScholarPubMed
Kugler, F. and Janshen, L., “Body position determines propulsive forces in accelerated running,” J. Biomech. 43, 343348 (2010).10.1016/j.jbiomech.2009.07.041CrossRefGoogle ScholarPubMed
Willwacher, S., Funken, J., Heinrich, K., Alt, T., Müller, R. and Potthast, W., “Free moment application by athletes with and without amputations in linear and curved sprinting,” 35th International Conference on Biomechanics in Sports, Cologne, Germany, vol. 35 (2017) pp. 847850.Google Scholar
Weyand, P. G., Sternlight, D. B., Bellizzi, M. J. and Wright, S., “Faster top running speeds are achieved with greater ground forces not more rapid leg movements,” J. Appl. Physiol. 89, 19911999 (2000).10.1152/jappl.2000.89.5.1991CrossRefGoogle Scholar
Kleesattel, A. L., Clever, D., Funken, J., Potthast, W. and Mombaur, K., “Modeling and Optimal Control of Able-Bodied and Unilateral Amputee Running,” 35th International Conference on Biomechanics in Sports, Cologne, Germany, vol. 35 (2017) pp. 164167.Google Scholar
Higginson, B. K., “Methods of running gait analysis,” Curr. Sports Med. Rep. 8(3), 136141 (2009).10.1249/JSR.0b013e3181a6187aCrossRefGoogle ScholarPubMed
Günther, M., Sholukha, V. A., Kessler, D., Wank, V. and Blickhan, R., “Dealing with skin motion and wobbling mass in inverse dynamics,” J. Mech. Med. Biol. 3(3–4), 309335 (2003).10.1142/S0219519403000831CrossRefGoogle Scholar
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E. and Thelen, D. G., “Opensim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Trans. Biomed. Eng. 54(11), 19401950 (2007).10.1109/TBME.2007.901024CrossRefGoogle Scholar
Felis, M. L., Mombaur, K. and Berthoz, A., “An optimal control approach to reconstruct human gait dynamics from kinematic data,” IEEE RAS International Conference on Humanoids Robots, Seoul, Korea (2015) pp. 10441051.Google Scholar
Lin, Y-C. and Pandy, M. G., “Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation,” J. Biomech. 59, 18 (2017).10.1016/j.jbiomech.2017.04.038CrossRefGoogle ScholarPubMed
Miller, R. H., Umberger, B. R., Hamill, J. and Caldwell, G. E., “Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running,” Proc. R. Soc. London B: Biol. Sci. 279(1733), 14981505 (2011).Google ScholarPubMed
Willwacher, S., Funken, J., Heinrich, K., Müller, R., Hobara, H., Grabowski, A. M., Brüggemann, G.-P. and Potthast, W., “Elite long jumpers with below the knee prostheses approach the board slower, but take-off more effectively than non-amputee athletes,” Sci. Rep. 7(1), 16058 (2017).10.1038/s41598-017-16383-5CrossRefGoogle ScholarPubMed
de Leva, P., “Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters,” J. Biomech. 29(9), 12231230 (1996).10.1016/0021-9290(95)00178-6CrossRefGoogle ScholarPubMed
Schultz, G. and Mombaur, K., “Modeling and optimal control of human-like running,” Trans. Mechatron. 15(5), 783792 (2010).10.1109/TMECH.2009.2035112CrossRefGoogle Scholar
Felis, M. L., “RBDL: An efficient rigid-body dynamics library using recursive algorithms,” Auton. Robots 41(2), 495511 (2017).10.1007/s10514-016-9574-0CrossRefGoogle Scholar
Bock, H. G. and Plittm, K.-J., “A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems,” Proceedings of the 9th IFAC World Congress, Budapest, Hungary (1984) pp. 242247.Google Scholar
Leineweber, D. B., Bauer, I., Bock, H. G. and Schlöder, J. P., “An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II),” Comput. Chem. Eng. 27 (2), 157174 (2003).10.1016/S0098-1354(02)00158-8CrossRefGoogle Scholar
Clark, K. P., Ryan, L. J. and Weyand, P. G., “A general relationship links gait mechanics and running ground reaction forces,” J. Exp. Biol. 220, 247258 (2017).10.1242/jeb.138057CrossRefGoogle ScholarPubMed
Geyer, H., Seyfarth, A. and Blickhan, R., “Compliant leg behaviour explains basic dynamics of walking and running,” Proc. R. Soc. London B: Biol. Sci. 273 (1603), 28612867 (2006).Google ScholarPubMed
Bezodis, I. N., Kerwin , D. G.and Salo, A. I. T., “Lower-limb mechanics during the support phase of maximum-velocity sprint running,” Med. Sci. Sports Exercise 40(4), 707715 (2008).10.1249/MSS.0b013e318162d162CrossRefGoogle ScholarPubMed
Stafilidis, S. and Arampatzis, A., “Track compliance does not affect sprinting performance,” J. Sports Sci. 25 (13), 14791490 (2007).10.1080/02640410601150462CrossRefGoogle Scholar
Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A. T., Rosemond, D. and Pandy, M. G., “Effect of running speed on lower limb joint kinetics,” Med. Sci. Sports Exercise 43(7), 12601271 (2011).10.1249/MSS.0b013e3182084929CrossRefGoogle ScholarPubMed
McGowan, C. P., Grabowski, A. M., McDermott, W. J., Herr, H. M. and Kram, R., “Leg stiffness of sprinters using running-specific prostheses,” J. R. Soc. Interf. 9(73), 19751982 (2012).10.1098/rsif.2011.0877CrossRefGoogle ScholarPubMed
Kleesattel, A. L., Potthast, W. and Mombaur, K., “Towards a Better Understanding of Human Sprinting Motions With and Without Prostheses,” IEEE RAS International Conference on Humanoid Robots, Birmingham, UK (2017) pp. 158164.Google Scholar
Emonds, A. L. and Mombaur, K., “Inverse Optimal Control Based Enhancement of Sprinting Motion Analysis With and Without Running-Specific Prostheses,” IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (2018) pp. 556562, Enschede, Netherlands: IEEE RAS/EMBS.Google Scholar

Emonds et al. supplementary material

Emonds et al. supplementary material 1

Download Emonds et al. supplementary material(Video)
Video 25.9 MB