Published online by Cambridge University Press: 09 March 2009
This paper proposes a method for finding an optimal geometric robot trajectory to perform a specified point-to-point motion without violating joint displacement limits or interference constraints. The problem is discretised, and a quantitative measure of interference is proposed. Constraint violations are represented by exterior penalty functions, and the problem is solved by iteratively improving an initial estimate of the trajectory. This is accomplished by numerically minimizing a cost functional using a modified Newton–Raphson method.