Published online by Cambridge University Press: 01 April 2014
Odometric error modelling for mobile robots is the basis of pose tracking. Without bounds the odometric accumulative error decreases localisation precision after long-range movement, which is often not capable of being compensated for in real time. Therefore, an efficient approach to odometric error modelling is proposed in regard to different drive type mobile robots. This method presents a hypothesis that the motion path approximates a circular arc. The approximate functional expressions between the control input of odometry and non-systematic error as well as systematic error derived from odometric error propagation law. Further an efficient algorithm of pose tracking is proposed for mobile robots, which is able to compensate for the non-systematic and systematic error in real time. These experiments denote that the odometric error modelling reduces the accumulative error of odometry efficiently and improves the specific localisation process significantly during autonomous navigation.