Published online by Cambridge University Press: 22 July 2014
This paper proposes a new kinematic controller for the waypoints guidance of robotic mobile platforms. A notable feature of the controller is its ability to process the raw sequence of waypoints to produce smooth reference velocities from control laws that are derived by taking into account a driving profile including the velocity limits, the acceleration limits, the motion modes through each waypoint (forward or backward) and the precision constraints that are required to ensure accurate waypoints traversal. A mathematical analysis demonstrates the convergence of the movements through the waypoints sequence. In addition, we present a simple way to adapt the driving profile in order that the platform reaches the last waypoint at a prescribed time. A feed-forward unit is finally described, that compensates for delays and first-order poles in the velocity response of the platform. Various simulations and experiments on real robotic platforms demonstrate the behavior and the effectiveness of the solution.