Published online by Cambridge University Press: 19 November 2012
This paper presents a solution for optimal trajectory planning problem of robotic manipulators with complicated dynamic equations. The main goal is to find the optimal path with maximum dynamic load carrying capacity (DLCC). Proposed method can be implemented to problems of both motion along a specified path and point-to-point motion. Dynamic Programming (DP) approach is applied to solve optimization problem and find the positions and velocities that minimize a pre-defined performance index. Unlike previous attempts, proposed method increases the speed of convergence by using the sequential quadratic programming (SQP) formulation. This formulation is used for solving problems with nonlinear constraints. Also, this paper proposes a new algorithm to design optimal trajectory with maximum DLCC for both fixed and mobile base mechanical manipulators. Algorithms for DLCC calculations in previous works were based on indirect optimization method or linear programming approach. The proposed trajectory planning method is applied to a linear tracked Puma and the mobile manipulator named Scout. Application of this algorithm is confirmed and simulation results are compared with experimental results for Scout robot. In experimental test, results are obtained using a new stereo vision system to determine the position of the robot end-effector.