Hostname: page-component-6587cd75c8-vfwnz Total loading time: 0 Render date: 2025-04-24T05:02:26.076Z Has data issue: false hasContentIssue false

System design and control of the sphere-wheel-legged robot

Published online by Cambridge University Press:  20 September 2024

Lunfei Liang
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
Yuquan Xu
Affiliation:
Jianghuai Advance Technology Center, Hefei, China
Liang Han*
Affiliation:
School of Control Engineering, Hefei University of Technology, Hefei, China
Yu Liu*
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
*
Corresponding authors: Liang Han; Email: [email protected]; Yu Liu; Email: [email protected]
Corresponding authors: Liang Han; Email: [email protected]; Yu Liu; Email: [email protected]

Abstract

The two-wheeled legged robot combines the advantages of legged robot and wheeled robot and has high terrain adaptability. Spherical robots are highly resistant to interference during detection. In this paper, a new sphere-wheel-legged robot is designed by combining these three motion modes. This paper begins by introducing the mechanical design, hardware, and software. Then, kinematics and dynamics of wheel-legged motion and spherical motion are analyzed in detail. Subsequently, the controllers for wheel-legged balancing motion, wheel-legged jumping motion, and sphere rolling motion are developed, respectively. Finally, experiments are carried out for different modes. The results demonstrate that the designed robot has excellent locomotor capabilities over different terrains.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

a

Lunfei Liang and Yuquan Xu contributed equally to this work

References

Li, X., Zhou, H., Feng, H., Zhang, S. and Fu, Y., “Design and Experiments of a Novel Hydraulic Wheel-Legged Robot (WLR),” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2018) pp. 32923297. 10.1109/IROS.2018.8594484.CrossRefGoogle Scholar
Bjelonic, M., Bellicoso, C. D., de Viragh, Y., Sako, D., Tresoldi, F. D., Jenelten, F. and Hutter, M., “Whole-body motion control and planning for wheeled quadrupedal robots,” IEEE Robot Autom Lett 4(2), 21162123 (2019).CrossRefGoogle Scholar
Ge, Y., Gao, F. and Chen, W., “A transformable wheel-spoke-paddle hybrid amphibious robot,” Robotica 42(3), 701727 (2024). doi: 10.1017/S0263574723001716.CrossRefGoogle Scholar
Joshi, V. A., Banavar, R. N. and Hippalgaonkar, R., “Design and analysis of a spherical mobile robot,” Mech Mach Theory 45(2), 130136 (2010). doi: 10.1016/j.mechmachtheory.2009.04.003.CrossRefGoogle Scholar
Jose, J. A. C., Basco, J. V., Jolo, J. K., Yambao, P. K., Cabatuan, M. K., Bandala, A. A., Ching, P. M. L. and Dadios, E. P., “Spherical Mobile Robot for Monitoring and Tracking Children Indoors,” In: 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), (IEEE, 2019) pp. 159163.CrossRefGoogle Scholar
Klemm, V., Morra, A., Salzmann, C., Tschopp, F., Bodie, K., Gulich, L., Kung, N., Mannhart, D., Pfister, C., Vierneisel, M., Weber, F., Deuber, R. and Siegwart, R., “Ascento: A Two-Wheeled Jumping Robot,” In: 2019 International Conference on Robotics and Automation (ICRA), (IEEE, 2019) pp. 75157521.CrossRefGoogle Scholar
Klemm, V., Morra, A., Gulich, L., Mannhart, D., Rohr, D., Kamel, M., de Viragh, Y. and Siegwart, R., “LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops,” IEEE Robot Autom Lett 5(2), 37453752 (2020). doi: 10.1109/LRA.2020.2979625.CrossRefGoogle Scholar
Introducing Handle (2017). Accessed: Sep. 11, 2023. [Online Video]. Available:. Available at: https://www.youtube.com/watch?v=-7xvqQeoA8c.Google Scholar
Li, X., Zhou, H., Zhang, S., Feng, H. and Fu, Y., “WLR-II, a Hose-Less Hydraulic Wheel-Legged Robot,” In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), (IEEE (2019) pp. 43394346.Google Scholar
Wang, S., Cui, L., Zhang, J., Lai, J., Zhang, D., Chen, K., Zheng, Y., Zhang, Z. and Jiang, Z.-P., “Balance Control of a Novel Wheel-legged Robot: Design and Experiments,” In: 2021 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2021) pp. 67826788.CrossRefGoogle Scholar
Ashraf, A., Mei, W., Gaoyuan, L., Kamal, M. M. and Mutahir, A., “Linear Feedback and LQR Controller Design for Aircraft Pitch Control,” In: IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE), (IEEE, 2018) pp. 276278.CrossRefGoogle Scholar
Chen, H., Wang, B., Hong, Z., Shen, C., Wensing, P. M. and Zhang, W., “Underactuated motion planning and control for jumping with wheeled-bipedal robots,” IEEE Robot Autom Lett 6(2), 747754 (2021). doi: 10.1109/LRA.2020.3047787.CrossRefGoogle Scholar
Eschmann, H., Ebel, H. and Eberhard, P., “Exploration-exploitation-based trajectory tracking of mobile robots using gaussian processes and model predictive control,” Robotica 41(10), 30403058 (2023). doi: 10.1017/S0263574723000863.CrossRefGoogle Scholar
Cui, L., Wang, S., Lai, J., Chen, X., Yang, S., Zhang, Z. and Jiang, Z.-P., “Nonlinear Balance Control of an Unmanned Bicycle: Design and Experiments,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2020) pp. 72797284.CrossRefGoogle Scholar
Jiang, Y. and Jiang, Z.-P., “Robust Adaptive Dynamic Programming,” In: Robust Adaptive Dynamic Programming, (IEEE, 2016) pp. 85111.Google Scholar
Xiao, F. and Chen, L., “Attitude control of spherical liquid-filled spacecraft based on high-order fully actuated system approaches,” J Syst Sci Complex 35(2), 471480 (2022).CrossRefGoogle Scholar
Wu, H., Li, B., Wang, F., Luo, B., Jiao, Z., Yu, Y. and Wang, P., “Design and analysis of the rolling and jumping compound motion robot,” Appl Sci 11(22), 10667 (2021).CrossRefGoogle Scholar
Alexey, B., Alexander, K., Yury, K. and Anton, K., “Stabilization of the motion of a spherical robot using feedbacks,” Appl Math Model 69, 583592 (2019). doi: 10.1016/j.apm.2019.01.008.CrossRefGoogle Scholar
Andani, M. T., Ramezani, Z., Moazami, S., Cao, J., Arefi, M. M. and Zargarzadeh, H., “Observer-based sliding mode control for path tracking of a spherical robot,” Complexity 2018(1), 3129398 (2018). doi: 10.1155/2018/3129398.CrossRefGoogle Scholar
Jia, W., Huang, Z., Sun, Y., Pu, H. and Ma, S., “Toward a Novel Deformable Robot Mechanism to Transition Between Spherical Rolling and Quadruped Walking,” In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), (IEEE, 2017) pp. 15391544.CrossRefGoogle Scholar
Aoki, T., Asami, K., Ito, S. and Waki, S., “Development of quadruped walking robot with spherical shell: Improvement of climbing over a step,” ROBOMECH J 7(1), 22 (2020).CrossRefGoogle Scholar
Wei, X., Tian, Y. and Wen, S., “Design and locomotion analysis of a novel modular rolling robot,” Mech Mach Theory 133, 2343 (2019). doi: 10.1016/j.mechmachtheory.2018.11.004.CrossRefGoogle Scholar
Xu, W., Wang, S., Fu, J. and Kang, P., “A Morphing Mobile Robot with Six-legged and Spherical Movement Modes,” In: IEEE International Conference on Information and Automation (ICIA), (IEEE, 2018) pp. 330335.CrossRefGoogle Scholar
Zheng, L., Guo, S., Piao, Y., Gu, S. and An, R., “Collaboration and task planning of turtle-inspired multiple amphibious spherical robots,” Micromachines 11(1), 71 (2020). doi: 10.3390/mi11010071.CrossRefGoogle ScholarPubMed
Guo, J., Li, C. and Guo, S., “Study on the autonomous multirobot collaborative control system based on spherical amphibious robots,” IEEE Syst J 15(4), 49504957 (2021). doi: 10.1109/JSYST.2020.3023727.CrossRefGoogle Scholar
Di Vito, D., Di Lillo, P., Arrichiello, F., Ferone, C., Amico, R. and Antonelli, G., “Control framework of the ROBILAUT soil sampling robot: System overview and experimental results,” Robotica, Published online, 116 (2024). doi: 10.1017/S0263574724000857.CrossRefGoogle Scholar
Chan, R. P. M., Stol, K. A. and Halkyard, C. R., “Review of modelling and control of two-wheeled robots,” Annu Rev Control 37(1), 89103 (2013). doi: 10.1016/j.arcontrol.2013.03.004.CrossRefGoogle Scholar
Wu, J. and Zhang, W., “Design of Fuzzy Logic Controller for Two-Wheeled Self-Balancing Robot,” In: Proceedings of 2011 6th international forum on strategic technology, (IEEE, 2011) pp. 12661270.CrossRefGoogle Scholar
Li, Z., Yang, C. and Fan, L.. Advanced Control of Wheeled Inverted Pendulum Systems (Springer Science & Business Media, London, 2012).Google Scholar
Pratt, J. and Pratt, G., “Intuitive Control of a Planar Bipedal Walking Robot,” In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), (IEEE, 1998) pp. 20142021.Google Scholar
Pratt, J., Torres, A., Dilworth, P. and Pratt, G., “Virtual Actuator Control,” In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96, (IEEE (1996) pp. 12191226.Google Scholar