Published online by Cambridge University Press: 08 May 2017
We present an approach that allows a robot to generate trajectories to perform a set of instances of a task using few physical trials. Specifically, we address manipulation tasks which are highly challenging to simulate due to complex dynamics. Our approach allows a robot to create a model from initial exploratory experiments and subsequently improve it to find trajectory parameters to successfully perform a given task instance. First, in a model generation phase, local models are constructed in the vicinity of previously conducted experiments that explain both task function behavior and estimated divergence of the generated model from the true model when moving within the neighborhood of each experiment. Second, in an exploitation-driven updating phase, these generated models are used to guide parameter selection given a desired task outcome and the models are updated based on the actual outcome of the task execution. The local models are built within adaptively chosen neighborhoods, thereby allowing the algorithm to capture arbitrarily complex function landscapes. We first validate our approach by testing it on a synthetic non-linear function approximation problem, where we also analyze the benefit of the core approach features. We then show results with a physical robot performing a dynamic fluid pouring task. Real robot results reveal that the correct pouring parameters for a new pour volume can be learned quite rapidly, with a limited number of exploratory experiments.