Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T08:41:40.786Z Has data issue: false hasContentIssue false

A saturated PD controller for robots equipped with brushless DC-motors

Published online by Cambridge University Press:  22 May 2009

V. M. Hernández-Guzmán*
Affiliation:
Universidad Autónoma de Querétaro, Facultad de Ingeniería, Apartado Postal 3-24, C.P. 76150, Querétaro, Qro., México
V. Santibáñez
Affiliation:
Instituto Tecnológico de la Laguna, División de Estudios de Posgrado e Investigación, Apartado Postal 49 Adm. 1, C.P. 27001, Torreón, Coahuila, México.
A. Zavala-Río
Affiliation:
Universidad Autónoma de Querétaro, Facultad de Ingeniería, Apartado Postal 3-24, C.P. 76150, Querétaro, Qro., México
*
*Corresponding author. E-mail: [email protected]

Summary

In this paper we are concerned with control of rigid robots equipped with brushless DC-motors (BLDC) when the electric dynamics of these actuators is taken into account. We show for the first time that a saturated PD controller suffices to achieve global asymptotic stability. Our controller is the simplest controller proposed until now to solve this problem: it only requires position measurements and linear feedback of electric current.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bridges, M. M. and Dawson, D. M., “Adaptive Control of Rigid-Link Electrically-Driven Robots Actuated with Brushless DC Motors,” Proceedings of 33rd Conference on Decision and Control, Lake Buena Vista, FL (1994), pp. 12841289.Google Scholar
2.Hu, J., Dawson, D. M., Burg, T. and Vedagarbha, P., “An Adaptive Tracking Controller for a Brushless DC Motor with Reduced Overparametrization Effects,” Proceedings of 33rd Conference on Decision and Control, Lake Buena Vista, FL (1994), pp. 18501855.Google Scholar
3.Melkote, H. and Khorrami, F., “Nonlinear adaptive control of direct-drive brushless DC motors and applications to robotic manipulators,” IEEE/ASME Trans. Mechatron. 4 (1), 7181 (1999).CrossRefGoogle Scholar
4.Hemati, N., Thorp, J. and Leu, M. C., “Robust nonlinear control of brushless DC motors for direct-drive robotic applications,” IEEE Trans. Indus. Electr. 37 (6), 460468 (1990).CrossRefGoogle Scholar
5.Ortega, R., Loría, A., Nicklasson, P. and H. Sira-Ramírez, Passivity-Based Control of Euler–Lagrange Systems (Springer, London, 1998).Google Scholar
6.Hernández-Guzmán, V. M., Santibáñez, V. and Campa, R., “PID control of robot manipulators equipped with brushless DC motors,” Robotica 27, 225233 (2009).Google Scholar
7.Campa, R., Torres, E., Santibáñez, V. and Vargas, R., “Electromechanical Dynamics Characterization of Brushless Direct-Drive Servomotor,” Proceedings of VII Mexican Congress on Robotics, COMRob 2005, México, D.F. (2005).Google Scholar
8.Parker, Automation, “Compumotor's Virtual Classroom,” Position Systems and Controls, Training and Product Catalog, CD-ROM (1998).Google Scholar
9.Dawson, D. M., Hu, J. and Burg, T. C., Nonlinear control of electric machinery (Marcel Dekker, New York, 1998).Google Scholar
10.Krause, P. C., Wasynczuk, O. and Sudhoff, S. D., Analysis of Electric Machinery and Drive Systems (IEEE Press, Hoboken, New Jersy, 2002).Google Scholar
11.Kelly, R., “A tuning procedure for stable PID control of robot manipulators,” Robotica 13, 141148 (1995).CrossRefGoogle Scholar
12.Kelly, R., Santibáñez, V. and Loría, A.. Control of Robot Manipulators in Joint Space (Springer, London, 2005).Google Scholar
13.Khalil, H. K., Nonlinear Systems (Prentice Hall, Upper Saddle River, 2002).Google Scholar
14.Zavala-Río, A. and Santibañez, V., “A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs,” IEEE Trans. Rob. 23 (2), 386391 (2007).Google Scholar
15.Spiegel, M. R.. Mathematical Handbook of Formulas and Tables (McGraw-Hill, Schaum, New York, 1974).Google Scholar
16.Hernández-Guzmán, V. M., Santibáñez, V. and Silva-Ortigoza, R., “A new tuning procedure for PID control of rigid robots,” Adv. Rob. 22, 10071023 (2008).Google Scholar
17.Hernández, V. M., Santibáñez, V., Carrillo, R.V., Molina, J. and López, J. J., “PD control of robots: Actuator dynamics and a new tuning procedure,” (in Spanish), Revista Iberoamericana de Automática e Informática Industrial 5 (4), 6268 (2008).CrossRefGoogle Scholar
18.Tomei, P., “Adaptive PD controller for robot manipulators,” IEEE Trans. Rob. Automat. 7 (4), 565570 (1991).Google Scholar
19.Campa, R., Kelly, R. and Santibañez, V., “Windows-based real-time control of direct-drive mechanisms: platform description and experiments,” Mechatronics 14, 10211036 (2004).CrossRefGoogle Scholar