Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-21T17:30:08.180Z Has data issue: false hasContentIssue false

Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures

Published online by Cambridge University Press:  26 October 2009

Gastone Ciuti
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy
Pietro Valdastri*
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy
Arianna Menciassi
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy IIT, Italian Institute of Technology Network, Genova, Italy
Paolo Dario
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy IIT, Italian Institute of Technology Network, Genova, Italy
*
*Corresponding author. E-mail: [email protected]

Summary

This paper describes a novel approach to capsular endoscopy that takes advantage of active magnetic locomotion in the gastrointestinal tract guided by an anthropomorphic robotic arm. Simulations were performed to select the design parameters allowing an effective and reliable magnetic link between the robot end-effector (endowed with a permanent magnet) and the capsular device (endowed with small permanent magnets). In order to actively monitor the robotic endoluminal system and to efficiently perform diagnostic and surgical medical procedures, a feedback control based on inertial sensing was also implemented. The proposed platform demonstrated to be a reliable solution to move and steer a capsular device in a slightly insufflated gastrointestinal lumen.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reavis, K. M. and Melvin, W. S., “Advanced endoscopic technologies,” Surg. Endosc. 22, 15331546 (2008).CrossRefGoogle ScholarPubMed
2. McGee, M. F., Rosen, M. J., Marks, J., Onders, R. P., Chak, A., Faulx, A., Chen, V. K. and Ponsky, J., “A primer on natural orifice transluminal endoscopic surgery: Building a new paradigm,” Surg. Innovation 13, 8693 (2006).CrossRefGoogle ScholarPubMed
3. Iddan, G. J. and Swain, C. P., “History and development of capsule endoscopy,” Gastrointest. Endosc. 14, 19 (2004).Google ScholarPubMed
4. Iddan, G., Meron, G., Glukhoysky, A. and Swain, P., “Wireless capsule endoscopy,” Nature 405, 405417 (2000).CrossRefGoogle ScholarPubMed
5. Moglia, A., Menciassi, A., Schurr, M. O. and Dario, P., “Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems,” Biomed. Microdevices 9, 235243 (2007).CrossRefGoogle ScholarPubMed
6. Moglia, A., Menciassia, A., Dario, P. and Cuschieri, A., “Clinical update: Endoscopy for small-bowel tumors”, The Lancet 370, 114116 (2007).CrossRefGoogle Scholar
7. VECTOR European Project website. Available on: http://www.vector-project.com. Last accessed August 2009.Google Scholar
8. Menciassi, A., Quirini, M. and Dario, P., “Microrobotics for future gastrointestinal endoscopy,” Minim. Invasive Therapy Allied Technol. 16, 91100 (2007).CrossRefGoogle ScholarPubMed
9. Park, H., Park, S., Yoon, E., Kim, B., Park, J. and Park, S., “Paddling Based Microrobot for Capsule Endoscopes,” Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy (Apr. 2007) pp. 33773382.CrossRefGoogle Scholar
10. Quirini, M., Scapellato, S., Menciassi, A., Dario, P., Rieber, F., Ho, C. N., Schostek, S. and Schurr, M. O., “Feasibility proof of a legged locomotion capsule for the GI tract,” Gastrointest. Endosc. 67, 11531158 (2008).CrossRefGoogle ScholarPubMed
11. Quirini, M., Webster, R., Menciassi, A. and Dario, P., “Design of a Pillsized 12-Legged Endoscopic Capsule Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy (Apr. 2007) pp. 18561862.CrossRefGoogle Scholar
12. Sidhu, R., Sanders, D. S. and McAlindon, M. E., “Gastrointestinal capsule endoscopy: From tertiary centres to primary care,” Br. Med. J. 332, 528531 (2006).CrossRefGoogle ScholarPubMed
13. Carpi, F., Galbiati, S. and Carpi, A., “Controlled navigation of endoscopic capsules: Concept and preliminary experimental investigations,” IEEE Trans. Biomed. Eng. 54, 20282036 (2007).CrossRefGoogle ScholarPubMed
14. Volke, F., Keller, J., Schneider, A., Gerber, J., Reimann-Zawadzki, M., Rabinovitz, E., Mosse, C. A. and Swain, P., “In-vivo remote manipulation of modified capsule endoscopes using an external magnetic field,” Gastrointest. Endosc. 5, AB121AB122 (2008).Google Scholar
15. Olympus Endocapsule. Available on: http://www.olympus-europa.com/endoscopy/. Last accessed August 2009.Google Scholar
16. Wang, X. and Meng, M. Q. H., “A Magnetic Stereo Actuation Mechanism for Active Capsule Endoscope,” Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society, Lyon, France (Sep. 2007) pp. 2811–2814.CrossRefGoogle Scholar
17. Abbott, J. J., Ergeneman, O., Kummer, M. P., Hirt, A. M. and Nelson, B. J., “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23, 12471252 (2007).CrossRefGoogle Scholar
18. Tamaz, S., Gourdeau, R., Chanu, A., Mathieu, J. B. and Martel, S., “Real-time MRI-based control of a ferromagnetic core for endovascular navigation,” IEEE Trans. Biomed. Eng. 55, 18541863 (2008).CrossRefGoogle ScholarPubMed
19. Stereotaxis website. Available on: http://www.stereotaxis.com. Last accessed August 2009.Google Scholar
20. Agashe, J. S. and Arnold, D. P., “A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solution,” J. Phys. D: Appl. Phys. 41, 105001-1-9 (2008).CrossRefGoogle Scholar
21. Manz, B., Benecke, M. and Volke, F., “A simple, small and low cost permanent magnet design to produce homogeneusmagnetic fields,” J. Magn. Reson. 192, 131138 (2008).CrossRefGoogle ScholarPubMed
22. Glaser, R., Biophysics (Springer, Heidelberg, Germany, 2001).Google Scholar
23. NDI The Aurora Electromagnetic Measurement System. Available on: http://www.ndigital.com. Last accessed August 2009.Google Scholar