Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T10:45:58.769Z Has data issue: false hasContentIssue false

Recent Approaches on Classification and Feature Extraction of EEG Signal: A Review

Published online by Cambridge University Press:  04 May 2021

Pooja
Affiliation:
Department of Instrumentation & Control Engineering, DR B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
SK Pahuja
Affiliation:
Department of Instrumentation & Control Engineering, DR B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
Karan Veer*
Affiliation:
Department of Instrumentation & Control Engineering, DR B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
*
*Corresponding author. Email: [email protected]

Abstract

Objective:

Electroencephalography (EEG) has an influential role in neuroscience and commercial applications. Most of the tools available for EEG signal analysis use machine learning to extract the required information. So, the study of robust techniques for feature extraction and classification is an important thing to understand the practical use of EEG. The paper aims that if there is any special tool for a particular task. Which feature domain or classifier has a significant role in EEG signal analysis?

Approach:

It presents a detailed report of the current trend for bio-electrical signals classification focusing on various classifiers’ advantages and disadvantages. This study includes literature from 2000 to 2021 with a brief description of EEG signal origin and advancement in classification techniques.

Results:

Randomly used classifiers for EEG signal can be categorized into five classes, namely Linear Classifiers, Nearest Neighbor Classifiers, Nonlinear Bayesian Classifiers, Neural Networks, and Combinations of Classifiers. Approximately 40% of studies use Support Vector Machine, Nearest Neighbor, and their combination with others. For specific tasks, particular classifiers are recommended in the survey. Features can be defined into four categories, namely TDFs, FDFs, TFDFs, and statistical features, where 39% of studies used TFDFs. Multi-domains features are preferred when the required information cannot be obtained from one domain.

Significance:

The paper summarizes the recent approaches for feature extraction and classification of EEG signals. It describes the brain waves with their classification, related behavior, and task with the physiological correlation. The comparative analysis of different classifiers, toolbox, the channel used, accuracy, and the number of subjects from various studies can help the practitioners choose a suitable classifier. Furthermore, future directions can cope up with the relevant problems and can lead to accurate classification.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mantri, S., Dukare, V., Yeogle, S., Patil, D. and Wadhai, V. M., “A survey: fundamentle of EEG,” C. Science and M. Studies, Int. J. Adv. Res. Comput. Sci. Manage. Stud. 1, 8389 (2013).Google Scholar
Al-Fahoum, A. S. and Al-Fraihat, A. A., “Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains,” ISRN Neurosci. 2014, 1–7 (2014).Google Scholar
Li, Y. C., Zhou, R., Xu, R. Q., Luo, J. and Jiang, S. X., “A quantum mechanics-based framework for EEG signal feature extraction and classification,” IEEE Trans. Emerging Top. Comput. 14(8), 111 (2020).Google Scholar
Al-Nafjan, A., Hosny, M., Al-Ohali, Y. and Al-Wabil, A., “Review and classification of emotion recognition based on EEG brain-computer interface system research: A systematic review,” MDPI Appl. Sci. 7(12), 134 (2017).Google Scholar
Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A. and Yger, F., “A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update,” J. Neural Eng. 15(3), 128 (2018).CrossRefGoogle ScholarPubMed
Hamada, M., Zaidan, B. B. and Zaidan, A. A., “A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison,” J. Med. Syst. 42(162), 125 (2018).CrossRefGoogle ScholarPubMed
Craik, A., He, Y. and Contreras-Vidal, J. L., “Deep learning for electroencephalogram (EEG) classification tasks: A review,” J. Neural Eng. 16(3), 128 (2019).CrossRefGoogle ScholarPubMed
Gao, Q., Wang, C. han, Wang, Z., Song, X. lin, Dong, E. zeng, and Song, Y., “EEG based emotion recognition using fusion feature extraction method,” Multimedia Tool Appl. 79, 2705727074 (2020).CrossRefGoogle Scholar
Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, B. and Wolpaw, J. R., “BCI2000: A general-purpose Brain-Computer Interface (BCI) system,” IEEE Trans. Biomed. Eng. 51(6), 10341043 (2004).CrossRefGoogle ScholarPubMed
Zyma, I., Tukaev, S., Seleznov, I., Kiyono, K., Popov, A., Chernykh, M. and Shpenkov, O., “Electroencephalograms during mental arithmetic task performance,” Data MPDI 4(1), 27 (2019).Google Scholar
Matran-Fernandez, A. and Poli, R., “Towards the automated localisation of targets in rapid image-sifting by collaborative braincomputer interfaces,” PLoS One 12(5), 128 (2017).CrossRefGoogle ScholarPubMed
Jung, T., “Introduction to electroencephalogram basic physics of EEG,BIOE 280A, Center for Advanced Neurological Engineering and Swartz Center for Computational Neuroscience and University of California San Diego, USA and Department of Computer Science National Chiao-Tung University, Hsinchu, Taiwan. https://cfmriweb.ucsd.edu/ttliu/be280a_12/BE280A12_IntrotoEEG.pdf. [Accessed on 7 September, 2020]Google Scholar
Saltzberg, B., Burch, N. R., Miles, A. and Correll, E. G., “A new approach, to signal analysis in electroencephalography,” National Electronics Conference, Chicago, Illinois, (1956) pp. 2430.Google Scholar
Barlow, J. S., “Autocorrelation and cross-correlation analysis,IRE Trans. Med. Electron. ME-6(3), 179183 (1959).CrossRefGoogle Scholar
Houston, M. C., “Some aspects of A College Health Service,” Am. J. Nurs. 42(10), 11831189 (1942).CrossRefGoogle Scholar
Nunez, P. L., “Representation of evoked potentials by Fourier-Bessel expansions,”IEEE Trans. Biomed. Eng. 74, 372374 (1973).CrossRefGoogle Scholar
Poage, J. L. and Prabhu, K. P. S., “Pattern classification applied to electro-encephalographs,” Technical Report No. 1 harvard University Cambridge, Massachusetts, (1956) pp. 156.Google Scholar
Carrie, J. R. G., “Computer methods for detecting and classifying EEG spikes and sharp waves,” Am. J. EEG Technol. 15(2), 6874 (1975).CrossRefGoogle Scholar
Sanderson, A. C., Segen, J. and Richey, E., “Hierarchical modeling of EEG signals,” IEEE Trans Pattern Anal. Mach. Intell. PAMI-2(5), 405415 (1980).CrossRefGoogle Scholar
Bronzino, J. D., “Quantitative analysis of the EEG—general concepts and animal studies,” IEEE Trans. Biomed. Eng. 31(12), 850856 (1984).CrossRefGoogle ScholarPubMed
Ifeachor, E. C., Jervis, B. W., Morris, E. L., Allen, E. M. and Hudson, N. R., “A new microcomputer-based online ocular artefact removal (OAR) system,IEEE Proc. Phys. Sci. Meas. Instrum. Manage. Educ. Rev 133(5), 291 (1986).CrossRefGoogle Scholar
Grajski, K. A., Breiman, L., Di Prisco, G. V. and Freeman, W. J., “Classification of EEG spatial patterns with a tree-structured methodology: CART,” IEEE Trans. Biomed. Eng. vol. BME-33(12), 10761086 (1986).CrossRefGoogle ScholarPubMed
Morgan, N. H., “Classifier-directed signal processing,” IEEE Trans. Biomed. Eng. 33(12), 10541068 (1986).Google Scholar
Clarson, V. H. and Liang, J. J., “Mathematical classification of evoked potential waveforms,” IEEE Trans. Syst. Man Cybern. 19(1), 6873 (1989).CrossRefGoogle Scholar
Park, S., Principe, J. C., Smith, J. R. and Reid, S. A., “TDAT—time domain analysis tool for EEG analysis,” IEEE Trans. Biomed. Eng. 37(8), 803811 (1990).CrossRefGoogle ScholarPubMed
Hazarika, N., “Non-linear considerations in EEG signal classification,” IEEE Trans. Signal Process. 45(4), 829836 (1997).CrossRefGoogle Scholar
Selven, S and R Srinivasan, “Removal of ocular artifacts from EEG using an efficient neural network based adaptive filtering technique,” IEEE Signal Process. Lett. 6(12), 330332 (1999).CrossRefGoogle Scholar
Bigan, C. and Woolfson, M. S., “Time-frequency analysis of short segments of biomedical data,” IEEE Proc. Sci. Meas. Technol. 147(6), 368373 (2002).CrossRefGoogle Scholar
Garrett, D., Peterson, D. A., Anderson, C. W. and Thaut, M. H., “Comparison of linear, nonlinear, and feature selection methods for EEG signal classification,” IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141144 (2003).CrossRefGoogle ScholarPubMed
Guler, I. and Ubeyli, E. D., “Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients,” J. Neurosci. Methods 148(2), 113121 (2005).CrossRefGoogle ScholarPubMed
Lemm, S., Blankertz, B. and Curio, G., “Spatio-spectral filters for robust classification of single trial EEG,” IEEE Trans. Biomed. Eng. 52(9), 17 (2002).Google Scholar
Guler, E. D. and Ubeyli, I., “Multi-class support vector machines for EEG- multi-class support vector machines for EEG-signals classification,” IEEE Trans. Inf. Technol. Biomed. 11, 117126 (2016).CrossRefGoogle Scholar
Herman, P., Prasad, G., McGinnity, T. M. and Coyle, D., “Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification,” IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 317326 (2008).CrossRefGoogle ScholarPubMed
Siuly, S., Li, Y. and Wen, P. P., “Clustering technique-based least square support vector machine for EEG signal classification,” Comput. Methods Programs Biomed. 104(3), 358372 (2011).CrossRefGoogle ScholarPubMed
Ullah, H., Uzair, M., Mahmood, A., Ullah, M., Khan, S. D. and Cheikh, F. A., “Internal emotion classification using EEG signal with sparse discriminative ensemble,” IEEE Access 7(c), 4014440153 (2019).CrossRefGoogle Scholar
Datta, A. and Chatterjee, R., “Emerging technologies in data mining and information security,” Adv. Intell. Syst. Comput. 755, 145154 (2019).Google Scholar
Zhang, Y., Wang, Y, Zhou, G, Jin, J, Wang, B, X Wang and A Cichocki, “Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces,” Expert Syst. Appl. 96, 302310 (2018).CrossRefGoogle Scholar
Islam, S. M. R., Sajol, A., Huang, X. and Ou, K. L., “Feature extraction and classification of EEG signal for different brain control machine,” 3rd International Conference on Electrical Engineering and Information and Communication Technology, ICEEICT 2016 (2017).CrossRefGoogle Scholar
Ren, W., Han, M., Wang, J., Wang, D. and Li, T., “Efficient feature extraction framework for EEG signals classification,” 7th International Conference on Intelligent Control and Information Processing, ICICIP 2016 - Proceedings, pp. 167172 (2017).CrossRefGoogle Scholar
Veer, K., “A technique for classification and decomposition of muscle signal for control of myoelectric prostheses based on wavelet statistical classifier,” Measurement 60, 283291 (2015).CrossRefGoogle Scholar
Al-Fahoum, A. S. and Al-Fraihat, A. A., “Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains,” ISRN Neurosci. 2014, 1–7 (2014).Google Scholar
Uyulan, C. and Erguzel, T. T., “Analysis of time - frequency EEG feature extraction methods for mental task classification,” Int. J. Comput. Intell. Syst. 10(1), 1280 (2017).CrossRefGoogle Scholar
Sun, L., Jin, B., Yang, H., Tong, J., Liu, C. and Xiong, H., “Unsupervised EEG feature extraction based on echo state network,” Inf. Sci. 475, 117 (2019).CrossRefGoogle Scholar
Sadeghian, A., Ye, Z. and Wu, B., “Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks,” IEEE Trans. Instrum. Meas. 58(7), 22532263 (2009).CrossRefGoogle Scholar
Rejer, I., Górski, P., Rejer, I., Górski, P., Component, I. and Data, E. E. G., “Independent component analysis for EEG data preprocessing - algorithms comparison,” Int. Fed. Inf. Process. (2017).Google Scholar
Lakshmanan, M. K., Nikookar, H. and Nikookar, H., “Construction of optimum wavelet packets for multi-carrier based spectrum pooling systems,” Wireless Press Commun. 54, 95121 (2010).CrossRefGoogle Scholar
Mane, A. R., Biradar, P. S. D. and Shastri, P. R. K., “Review paper on feature extraction methods for EEG signal analysis,” Int. J. Emerging Trend Eng. Basic Sci. (IJEEBS) 2(1), 545552 (2015).Google Scholar
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F. and Arnaldi, B., “A review of classification algorithms for EEG-based brain-computer interfaces,” J. Neural Eng. 4(2), 113 (2007).CrossRefGoogle ScholarPubMed
Subasi, A. and Gursoy, M. I., “EEG signal classification using PCA, ICA, LDA and support vector machines,” Expert Syst. Appl. 37(12), 86598666 (2010).CrossRefGoogle Scholar
Kumar, P. N. and Kareemullah, H., “EEG signal with feature extraction using SVM and ICA classifiers,” Int. Conf. Inf. Commun. Embedded Sys. ICICES 2014 85(3), 17 (2015).Google Scholar
Peters, B. O., Pfurtscheller, G. and Flyvbjerg, H., “Automatic differentiation of multichannel EEG signals,” IEEE Trans. Biomed. Eng. 48(1), 111116 (2001).CrossRefGoogle ScholarPubMed
Yom-Tov, E. and Inbar, G. F., “Feature selection for the classification of movements from single movement-related potentials,” IEEE Trans. Neural Sys. Rehabil. Eng. 10(3), 170177 (2002).CrossRefGoogle ScholarPubMed
Rodionov, A. S. and L’vov, A. A., “Comparison of linear, non-linear and feature selection methods for EEG signal classification,” Conf. Proc. – Int. Conf. Actual Probl. Electron. Devices Eng. APEDE’ 2004(1), 436439 (2004). doi: 10.1109/apede.2004.1393604.CrossRefGoogle Scholar
Min, W., Cui, H., Rao, H., Li, Z. and Yao, L., “Detection of human falls on furniture using scene analysis based on deep learning and activity characteristics,” IEEE Access 6(Cccv), 93249335 (2018).CrossRefGoogle Scholar
Espinosa, R., Ponce, H., Gutiérrez, S., Martnez-Villaseñor, L., Brieva, J. and Moya-Albor, E., “A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset,” Comput. Biol. Med. 115 (2019).CrossRefGoogle Scholar
Li, J., Zhang, L., Tao, D., Sun, H. and Zhao, Q., “A Prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification,” IEEE Trans. Neural Sys. Rehabil. Eng. 17(2), 107115 (2009).CrossRefGoogle ScholarPubMed
Khan, Y. U. and Sepulveda, F., “Brain-computer interface for single-trial EEG classification for wrist movement imagery using spatial filtering in the gamma band,” IET Signal Process. 4(5), 510517 (2010).CrossRefGoogle Scholar
Guo, L., Rivero, D., Dorado, J., Munteanu, C. R. and Pazos, A., “Automatic feature extraction using genetic programming: An application to epileptic EEG classification,” Expert Syst. Appl. 38(8), 1042510436 (2011).CrossRefGoogle Scholar
Yi, W., Qiu, S., Qi, H., Zhang, L., Wan, B. and Ming, D., “EEG feature comparison and classification of simple and compound limb motor imagery,” J. Neuro Eng. Rehabil. 10(1), 112 (2013).Google ScholarPubMed
Wang, X. W., Nie, D. and Lu, B. L., “Emotional state classification from EEG data using machine learning approach,” Neurocomputing 129, 94106 (2014).CrossRefGoogle Scholar
Alomari, M. H., Awada, E. A., Samaha, A. and Alkamha, K., “Wavelet-based feature extraction for the analysis of EEG signals associated with imagined fists and feet movements,” Comput. Inf. Sci. 7(2), 812 (2014).Google Scholar
Siuly, S. and Li, Y., “Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification,” Comput. Methods Programs Biomed. 119(1), 2942 (2015).CrossRefGoogle ScholarPubMed
Amin, H. U., Malik, AS, Ahmad, RF, Badruddin, N, Kamel, N, Hussain, M, Chooi, WT, “Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques,” Australas. Phys. Eng. Sci. Med. 38(1), 139149 (2015).CrossRefGoogle ScholarPubMed
Atkinson, J. and Campos, D., “Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers,” Expert Syst. Appl. 47, 3541 (2016).CrossRefGoogle Scholar
Amin, H. U., Mumtaz, W., Subhani, A. R., Saad, M. N. M. and Malik, A. S., “Classification of EEG signals based on pattern recognition approach,” Front. Comput. Neurosci. 11, 112 (2017).CrossRefGoogle ScholarPubMed
Ieracitano, C., Mammone, N., Hussain, A. and Morabito, F. C., “A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia,” Neural Netw. 123, 176190 (2020).CrossRefGoogle ScholarPubMed
Venkatachalam, K., Devipriya, A., Manirajc, J., Sivaramd, M., Ambikapathye, A. and Amiri, I. S., “A novel method of motor imagery classification using eeg signal,” Artif. Intell. Med. 103, 101787 (2020).Google Scholar
Delsy, T. T. M., Nandhitha, N. M. and Rani, B. S., “Feasibility of spectral domain techniques for the classification of non-stationary signals,” J. Ambient Intell. Hum. Comput. (2020). doi: 10.1007/s12652-020-02220-7.Google Scholar
Tuncer, T., “A new stable non-linear textural feature extraction method based EEG signal classification method using substitution Box of the Hamsi hash function: Hamsi pattern,” Appl. Acoust. 172, 107607 (2021).CrossRefGoogle Scholar
Guler, I. and Ubeyli, E. D., “Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients,” J. Neurosci. Methods 148(2), 113121 (2005).CrossRefGoogle ScholarPubMed
Herman, P., Prasad, G., McGinnity, T. M. and Coyle, D., “Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification,” IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 317326 (2008).CrossRefGoogle ScholarPubMed
Sarkar, S., Taraphder, U., Datta, S., Swain, S. P. and Saikhom, D., “Multivariate statistical data analysis-principal component analysis (PCA),” Int. J. Livest. Res. 7(5), 6078 (2017).Google Scholar
Lemm, S., Blankertz, B., Curio, G. and Müller, K. R., “Spatio-spectral filters for improving the classification of single trial EEG,” IEEE Trans. Biomed. Eng. 52(9), 15411548 (2005).CrossRefGoogle ScholarPubMed
Li, F., He, F., Wang, F., Zhang, D., Xia, Y. and Li, X., “A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning,” Appl. Sci. 10(5), 214 (2020).Google Scholar
ᐚupa, O., Procházka, A, Vyšata, O, Schätz, M, Mareš, J, Vališ, M and Mařk, V, “Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect,” Biomed. Eng. Online 14(1), 120 (2015).Google Scholar
Dranca, L., de Mendarozketa, LD, Goñi, A, Illarramendi, A, Gomez, IN, Alvarado, MD and Rodrguez-Oroz, MC, “Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment,” BMC Bioinf. 19(1) (2018).CrossRefGoogle ScholarPubMed
Lee, H., Guan, L. and Lee, I., “Video analysis of human gait and posture to determine neurological disorders,” Eurasip J. Image Video Process. 380867, 112 (2008).Google Scholar
Tahir, N. M. and Manap, H. H., “Parkinsons disease gait classification based on machine learning approach,” J. Appl. Sci. 12(2), 180185 (2012).CrossRefGoogle Scholar
Verlekar, T. T., Soares, L. D. and Correia, P. L., “Automatic classification of gait impairments using a markerless 2D video-based system,” mdpi.com.Google Scholar
Khan, T., Westin, J. and Dougherty, M., “Motion cue analysis for parkinsonian gait recognition,” Open Biomed. Eng. J. 7(1), 18 (2013).CrossRefGoogle ScholarPubMed
Aich, S., Pradhan, P. M., Park, J. and Kim, H. C., “A machine learning approach to distinguish Parkinson’s disease (PD) patient’s with shuffling gait from older adults based on gait signals using 3D motion analysis,” Int. J. Eng. Technol. (UAE) 7(3), 153156 (2018).CrossRefGoogle Scholar
Wahid, F., Begg, R. K., Hass, C. J., Halgamuge, S. and Ackland, D. C., “Classification of Parkinson’s disease gait using spatial-temporal gait features,” IEEE J. Biomed. Health Inf. 19(6), 17941802 (2015).CrossRefGoogle ScholarPubMed
Kuhner, A., Schubert, T., Maurer, C. and Burgard, W., “An online system for tracking the performance of Parkinson’s patients,” IEEE Int. Conf. Intell. Robots Syst. 2017, 1664–1669 (2017).Google Scholar
Soltaninejad, S., Rosales-Castellanos, A., Ba, F., Ibarra-Manzano, M. A. and Cheng, I., “Body movement monitoring for Parkinson’s disease patients using a smart sensor based non-invasive technique,” IEEE 20th Int. Conf. e-Health Netw. Appl. Serv. Healthcom 2018, 16 (2018).Google Scholar
Procházka, A., Vyšata, O., Vališ, M., Upa, O., Schätz, M. and Mařk, V., “Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect,” Digital Signal Process.: Rev. J. 47, 169177 (2015).CrossRefGoogle Scholar
Verlekar, T. T., Soares, L. D. and Correia, P. L., “Automatic classification of gait impairments using a markerless 2D video-based system,” Sensors 18(9), 116 (2018).CrossRefGoogle ScholarPubMed
Pistacchi, M., Gioulis, M, Sanson, F, De Giovannini, E, Filippi, G, F Rossetto and SZ Marsala, “Gait analysis and clinical correlations in early Parkinson’s disease,” Funct. Neurol. 32(1), 2834 (2017).CrossRefGoogle Scholar
Hwang, S., Woo, Y., Lee, S. Y., Shin, S. S. and Jung, S., “Augmented feedback using visual cues for movement smoothness during gait performance of individuals with parkinson’s disease,” J. Phys. Ther. Sci. 24(6), 553556 (2012).CrossRefGoogle Scholar
Manap, H. H., Tahir, N. M. and Abdullah, R., “Parkinsonian gait motor impairment detection using decision tree,” Proceedings - UKSim-AMSS 7th European Modelling Symposium on Computer Modelling and Simulation, EMS 2013 (2013), pp. 209214.Google Scholar
Shao, B., Li, X. and Bian, G., “A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph,” Expert Syst. Appl. 113764 (2020).CrossRefGoogle Scholar
Ambrus, M., J. A. Sanchez and M. Fernandez-del-Olmo, “Walking on a treadmill improves the stride length-cadence relationship in individuals with Parkinson’s disease,” Gait Posture 68, 136140 (2019).CrossRefGoogle Scholar
Nõmm, S., Toomela, A., Vaske, M., Uvarov, D. and Taba, P., “An alternative approach to distinguish movements of parkinson disease patients,” IFAC-PapersOnLine 49(19), 272276 (2016).CrossRefGoogle Scholar
Li, M. H., Mestre, T. A., Fox, S. H. and Taati, B., “Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation,” J. Neuro Eng. Rehabil. 15(1), 113 (2018).Google ScholarPubMed
Sun, R., Wang, Z., Martens, K. E. and Lewis, S., “Convolutional 3D attention network for video based freezing of gait recognition,” Int. Conf. Digital Image Comput.: Tech. Appl., DICTA 2018 15(97), 113 (2019).Google Scholar
Dranca, L., de Mendarozketa, LD, Goñi, A, Illarramendi, A, Gomez, IN, Alvarado, MD and Rodrguez-Oroz, MC, “Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment,” BMC Bioinf. 19(1), 115 (2018).CrossRefGoogle ScholarPubMed
Aich, S., Pradhan, PM, Park, J, Sethi, N, Vathsa, VS and Kim, HC, “A validation study of Freezing of Gait (FoG) detection and machine-learning-based fog prediction using estimated gait characteristics with a wearable accelerometer,” Sensors 18(3287), 316 (2018).CrossRefGoogle Scholar