No CrossRef data available.
Published online by Cambridge University Press: 21 January 2025
In certain scenarios, the large footprint of a robot is not conducive to multi-robot cooperative operations. This paper presents a generalized single-loop parallel manipulator with remote center of motion (GSLPM-RCM), which addresses this issue by incorporating a reconfigurable base. The footprint of this RCM manipulator can be adjusted by varying the parameters of the reconfigurable base. First, utilizing configuration evolution, a reconfigurable base is constructed based on the principle of forming RCM motion. Then, according to the modular analysis method, the inverse kinematics of this parallel RCM manipulator is analyzed, and the workspace is also analyzed. Subsequently, the motion/force transmissibility of this RCM manipulator is analyzed by considering its single-loop and multi-degree of freedom characteristics. Leveraging the workspace index and transmissibility indices, dimension optimization of the manipulator is implemented. Finally, the influence of the reconfigurable base on the workspace and the transmissibility performance of the optimized manipulator is studied.