Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T03:25:06.487Z Has data issue: false hasContentIssue false

A nonlinear iterative learning method for robot path control

Published online by Cambridge University Press:  09 March 2009

Zeungnam Bien
Affiliation:
Dept. of Electrical Eng., KAIST, P.O. Box 150, Cheongryang, Seoul, 130-650 (Korea)
Dong-Hwan Hwang
Affiliation:
Dept. of Electrical Eng., KAIST, P.O. Box 150, Cheongryang, Seoul, 130-650 (Korea)
Sang-Rok Oh
Affiliation:
Control Systems Lab., KIST, P.O. Box 131, Cheongryang, Seoul, 136-791 (Korea)

Summary

An iterative learning control method is proposed for a class of non-linear dynamic systems with uncertain parameters. The method, in which non-linear system model is used, employs the model algorithmic control concept in the iteration sequence. A sufficient condition for convergency is provided. Then the method is shown to be applicable to continuous-path control of a robot manipulator.

Type
Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Makowski, K. and Neustadt, L.W.., “Optimal Problems with Mixed Control-Phase Variable Equality and Inequality ConstraintsSIAM J. Control 12, 184228 (1974).CrossRefGoogle Scholar
2.Oh, S.-R., Bien, Z. and Suh, I.H., “A Model Algorithmic Learning Control Method for Continuous-Path Control of a Robot ManipulatorRobotica, 8, part 1, 3136 (1990).CrossRefGoogle Scholar
3.Arimoto, S., Kawamura, S. and Miyazaki, F., “Bettering Operation of Robots by LearningJ. Robotic Systems 1, No. 2, 123140 (1984).CrossRefGoogle Scholar
4.Mita, T. and Kato, E., “Iterative Control and Its Application to Motion Control of Robot Arm—A Direct Approach to Servo ProblemsProc. of 24th IEEE Conf. on Dec. Cont.,Fort Lauderdale, Florida (12., 1985), pp. 13931398.CrossRefGoogle Scholar
5.Togai, M. and Yamano, O., “Analysis and Design of an Optimal Learning Control Scheme for Industrial RobotsProc. of 24th IEEE Conf. on Dec. Cont.,Fort Lauderdale, Florida (12., 1985) pp. 13991404.CrossRefGoogle Scholar
6.Craig, J. J., “Adaptive Control of Manipulators through Repeated TrialsProc. American Control Conf.Boston15661574 (06, 1984).Google Scholar
7.Gu, Y. and Loh, N., “Learning Control in Robotic Systems” Proc. IEEE Int. Symp. Intelligent Control, Philadelphia, PA (1987) pp. 360364.Google Scholar
8.Oh, S.-R., Bien, Z. and Suh, I.H., “An Iterative Learning Control Method with Application for Robot ManipulatorIEEE J. Robotics Automat. 4, No. 5, 508514 (1988).CrossRefGoogle Scholar
9.Bien, Z. and Huh, K.M.., “Higher-Order Iterative Learning Control AlgorithmIEEE Proceedings, 136, Pt. D, No. 3 (05, 1989).Google Scholar
10.Arimoto, S., Kawamura, S. and Miyazaki, F., “Mathematical Theory of Learning with Application to Robot ControlProc. 4th Yale Workshop on Applications of Adaptive System Theory,Center for System Science, Yale University (05 1985) pp. 215220.Google Scholar
11.Hauser, J., “Learning Control for a Class of Nonlinear SystemsProc. of 26th IEEE Conference on Decision and Control,Los Angeles, CA (12. 1987) pp. 859860.CrossRefGoogle Scholar
12.Sugie, T. and Ono, T., “On a Learning Control LawSystem and Control 31, No. 2, 129135 (1987).Google Scholar
13.Bondi, P., Casalino, G. and Gambardella, L., “On the Iterative Learning Control Theory for Robot ManipulatorsIEEE J. Robotics Automat. 4, No. 5, 1422 (02. 1988).CrossRefGoogle Scholar
14.Rouhani, R. and Mehra, R.K., “Model Algorithmic Control (MAC): Basic Theoretical PropertiesAutomatica 18, No. 4, 401414 (1982).CrossRefGoogle Scholar
15.Richalet, J., Roulet, A., Testud, J.L. and Papon, J., “Model Predictive Heuristic Control: Application to Industrial ProcessesAutomatica 14, 413428 (1978).CrossRefGoogle Scholar
16.Lakshmikantham, V. and Leela, S., Differential and Integral Inequalities (Academic Press, New York, NY, 1969).Google Scholar
17.Hwang, D.-H., Bien, Z. and Oh, S.-R., “Iterative Adaptive Control of Partially Known System under Tight Servo Constraints” '89 KACC, Seoul Korea (10. 28–29, 1989) pp. 682686.Google Scholar
18.Lee, C.S.G., Gonzalez, R.C. and Fu, K.S., Tutorial on Robotics (IEEE Computer Society Press, Los Angeles, 1984).Google Scholar
19.You, D.S., Chung, M.J. and Bien, Z., “Real-time Implementation and Evaluation of Dynamic Control Algorithms for Industrial Manipulators” Proc. IECON87, SPIE, 853, Cambridge, Massachusetts, USA (11, 1987) pp. 2631.Google Scholar
20.Barnett, S., Matrices in Control Theory (Van Nostrand Reinhold, New York, NY, 1971).Google Scholar