Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T13:23:54.004Z Has data issue: false hasContentIssue false

Nonlinear control robot: A phenomenological approach to linearization by static feedback

Published online by Cambridge University Press:  09 March 2009

M. Verdier
Affiliation:
LIMRO, IUT de Cachan, 9 av. de la div. Leclerc, 94230 Cachan (France).
M. Rouff
Affiliation:
LGEP, CNRS-ESE, Plateau du Moulon, 91190 Gif sur Yvette (France).
J. G. Fontaine
Affiliation:
LIMRO, IUT de Cachan, 9 av. de la div. Leclerc, 94230 Cachan (France).

Summary

This paper presents a linearization by static feedbacks in the robotic field, i.e. by feedback depending on the whole state space. A phenomenological approach is considered, which by using the derivation with respect to time, leads to the major results of the method. Simulation results are presented, and some aspects of the correction of the effect of the characteristic numbers are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Paul, R.Modeling, trajectory calculation and servoing of a computer control led armStanford Memo, 177 (09 1972).Google Scholar
2.Freund, E.Fast nonlinear control with arbitary pole placement for industrial robots and manipulatorsInt. J. Robotics Research 1(1), 6578 (1982).CrossRefGoogle Scholar
3.Claude, D., Fliess, M. and Isidori, A.Immersion, directe et par bouclage, d'un système non linéaire dans un linéaireC.R. Acad. Sc. Paris, 296, Série I, 237240 (1983).Google Scholar
4.Claude, D. “Everything you always wanted to know about linearization but were afraid to ask” In: Algebraic and Geometric Methods in Nonlinear Control Theory (Fliess, M. and Huzewinkel, M., eds) (D. Reidel Publishing, Holland, 1986).Google Scholar
5.Rouff, M., Vibet, C. and Claude, D. “Découplage et linéarisation avec positionnement des pôles des systèmes multivariables, Le Point en Automatique” Tec. Doc. (Lavoisier, France, 1986).Google Scholar
6.Rouff, M. and Lamnabhi-Lagarrigue, F.A new approach to nonlinear optimal feedback lawSystems and Control Letters 7, 411417 (1986).Google Scholar
7.Vibet, C.Robots Principes et Controles (Ellipses, Paris, 1987).Google Scholar