Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T19:35:23.481Z Has data issue: false hasContentIssue false

Kinematic calibration of the parallel Argos mechanism

Published online by Cambridge University Press:  23 April 2001

Peter Vischer
Affiliation:
Institute of Robotic Systems, Swiss Federal Institute of Technology – 1015 Lausanne (Switzerland)
Reymond Clavel
Affiliation:
Institute of Robotic Systems, Swiss Federal Institute of Technology – 1015 Lausanne (Switzerland)

Abstract

This paper deals with the kinematic calibration of the Argos mechanism which is a novel, spherical parallel structure having 3 rotational degrees of freedom. Its design is based on 3 actuators carrying a pantograph each which are connected to the end-effector by means of 3 spherical joints. Two different calibration models are introduced. The first one models mechanical deviations in all parts except for the spherical joints and the assumption that they are moving on a perfect circle (“model 27”). The second model considers only deviations which affects the orientation of the end-effector but not its position assuming that the mechanism remains spherical (“model 9”). A measurement set-up allows to measure the full pose (position and orientation) of the end-effector with respect to its base. These measurement data are used to identify the parameters of the two calibration models resulting in an accuracy improvement of RMS (root mean squares errors) of a factor of 5.3 for the orientation and a factor of 3.4 for the prediction of the position.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)