Published online by Cambridge University Press: 09 March 2009
In this paper a new method is presented for solving the inverse kinematics of free-floating space manipulators. The idea behind the method is to move the space manipulator along a path with minimum dynamic disturbance. The method is proposed to use the manipulator Jacobian instead of the generalized Jacobian of the spacecraft-manipulator system. This is based on the simple fact that, if the space manipulator moves along the so-called Zero Disturbance Path (ZDP), the spacecraft is immovable. As a result, the space manipulator can in this case be treated as a terrestrial fixed-based manipulator. Hence, the motion mapping between the joints and the end-effector can be described directly by the manipulator Jacobian. In the case that the ZDP does not exist, it can be shown that the solutions obtained by the proposed method provide a path with minimum dynamic disturbance.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.