Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T15:57:51.296Z Has data issue: false hasContentIssue false

High-Gain Observer-Based Neural Adaptive Feedback Linearizing Control of a Team of Wheeled Mobile Robots

Published online by Cambridge University Press:  11 April 2019

Neda Sarrafan
Affiliation:
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. E-mail: [email protected]
Khoshnam Shojaei*
Affiliation:
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. E-mail: [email protected] Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
*
*Corresponding author. E-mail: [email protected]

Summary

This paper addresses the neural network (NN) output feedback formation tracking control of nonholonomic wheeled mobile robots (WMRs) with limited voltage input. A desired formation is achieved based on the leader–follower strategy utilizing hyperbolic tangent saturation functions to reduce the risk of actuator saturation. The controller is developed by incorporating the high-gain observer and radial basis function (RBF) NNs using the inverse dynamics control technique. The high-gain observer is introduced to estimate velocities of the followers. The RBF NN preserves the robustness of the proposed controller against uncertain nonlinearities. The adaptive laws are also combined by a robust control term to estimate the weights of RBF NN, approximation errors, and bounds of unknown time-variant environmental disturbances. A Lyapunov-based stability analysis proves that all signals of the closed-loop system are bounded, and tracking errors are uniformly ultimately bounded. Finally, some simulations are carried out to show the effectiveness of the proposed controller for a number of WMRs.

Type
Articles
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balch, T. and Arkin, R. C., “Behavior-based formation control for multirobot teams,IEEE Trans. Rob. Autom. 14(6), 926939 (1998).10.1109/70.736776CrossRefGoogle Scholar
Fredslund, J. and Mataric, M. J., “A general algorithm for robot formations using local sensing and minimal communication,IEEE Trans. Rob. Autom. 18(5), 837846 (2002).10.1109/TRA.2002.803458CrossRefGoogle Scholar
Low, C. B., “A flexible virtual structure formation keeping control design for nonholonomic mobile robots with low-level control systems, with experiments,” In: IEEE International Symposium on Intelligent Control, Juan Les Pins, France (2014) pp. 15761582.Google Scholar
Lewis, M. A. and Tan, K.-H., “High precision formation control of mobile robots using virtual structures,Auton. Rob. 4(4), 387403 (1997).10.1023/A:1008814708459CrossRefGoogle Scholar
Park, B. S. and Yoo, S. J., “Adaptive leader-follower formation control of mobile robots with unknown skidding and slipping effects,Int. J. Control, Autom. Syst. 13(3), 587594 (2015).10.1007/s12555-014-0249-3CrossRefGoogle Scholar
Shojaei, K., “Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators,Neurocomputing 194, 372384 (2016).10.1016/j.neucom.2016.02.041CrossRefGoogle Scholar
Desai, J. P., Ostrowski, J. and Kumar, V., “Controlling formations of multiple mobile robots,” In: IEEE International Conference Robotics and Automation, vol. 4 (IEEE, Leuven, 1998) pp. 28642869.Google Scholar
Martins, N. A., Youssef, E. S., Bertol, D. W., Pieri, D. E., Moreno, U. F. and Castelan, E. B., “Trajectory tracking of a nonholonomic mobile robot with kinematic disturbances a variable structure control design,IEEE Latin Am Trans. 9(3), 276283 (2011).10.1109/TLA.2011.5893772CrossRefGoogle Scholar
Chen, J., Sun, D., Yang, J. and Chen, H. Y., “Leader-follower formation control of multiple non-holonomic mobile robots incorporating Receding-Horizon scheme,Int. J. Rob. Res. 29(6), 727747 (2009).10.1177/0278364909104290CrossRefGoogle Scholar
Chang, Y. H., Chang, C. W., Chen, C. L. and Tao, C. W., “Fuzzy sliding-mode formation control for multirobot systems: Design and implementation,IEEE Trans. Syst. Man Cybern. 42, 444457 (2012).10.1109/TSMCB.2011.2167679CrossRefGoogle ScholarPubMed
Peng, Z., Wen, G., Rahmani, A. and Yu, Y., “Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach,Rob. Auton. Syst. 61(9), 988996 (2013).10.1016/j.robot.2013.05.004CrossRefGoogle Scholar
Dierks, T., Brenner, B. and Jagannathan, S., “Neural network-based optimal control of mobile robot formations with reduced information exchange,IEEE Trans. Control Syst. Technol. 21(4), 14071415 (2013).10.1109/TCST.2012.2200484CrossRefGoogle Scholar
Guillet, A., Lenain, R., Thuilot, B. and Martinet, P., “Adaptable robot formation control: Adaptive and predictive formation control of autonomous vehicles,IEEE Rob. Autom. Mag. 21, 2839 (2014).10.1109/MRA.2013.2295946CrossRefGoogle Scholar
Shojaei, K., Shahri, A. M. and Tabibian, B., “Design and implementation of an inverse dynamics controller for uncertain nonholonomic robotic systems,J. Intell. Rob. Syst. 71(1), 6583 (2013).10.1007/s10846-012-9762-xCrossRefGoogle Scholar
Do, K. D. and Pan, J., “Global output-feedback path tracking of unicycle-type mobile robots,Rob. Comput. Integr. Manufact. 22, 166179 (2006).10.1016/j.rcim.2005.03.002CrossRefGoogle Scholar
Sun, T., Liu, F., Pei, H. and He, Y., “Observer-Based adaptive leader-following formation control for nonholonomic mobile robots,IET Control Theory Appl. 6(18), 28352841 (2012).10.1049/iet-cta.2011.0492CrossRefGoogle Scholar
Park, B. S, Yoo, S. J., Park, J. B. and Choi, Y. H., “Adaptive output-feedback control for trajectory tracking of electrically driven non-holonomic mobile robots,IET Control Theory Appl. 5(6), 830838 (2011).10.1049/iet-cta.2010.0219CrossRefGoogle Scholar
Shojaei, K. and Shahri, A.M., “Output feedback tracking control of uncertain nonholonomic wheeled mobile robots: A dynamic surface control approach,IET Control Theory Appl. 6(2), 216228 (2012).10.1049/iet-cta.2011.0169CrossRefGoogle Scholar
Shojaei, K., “Observer-based neural adaptive formation control of autonomous surface vessels with limited torque,Rob. Auton. Syst. 78, 8396 (2016).10.1016/j.robot.2016.01.005CrossRefGoogle Scholar
Cheng, Y., Jia, R., Du, H., Wen, G. and Zhu, W., “Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback,Int. J. Robust Nonlinear Control 28(6), 20822096 (2017).10.1002/rnc.4002CrossRefGoogle Scholar
Hassan, M., Aljuwaiser, E. and Badr, R., “A new on-line observer-based controller for leader-follower formation of multiple nonholonomic mobile robots,J. Franklin Institute 355(5), 24362472 (2018).10.1016/j.jfranklin.2018.01.009CrossRefGoogle Scholar
Yu, J., Dong, X., Li, Q. and Ren, Z., “Practical time-varying formation tracking for multiple non-holonomic mobile robot systems based on the distributed extended state observers,IET Control Theory Appl. 12(12), 17371747 (2018).10.1049/iet-cta.2017.1397CrossRefGoogle Scholar
Shojaei, K., “Neural adaptive PID formation control of car-like mobile robots without velocity measurements,Adv. Rob. 31(18), 947964 (2017).10.1080/01691864.2017.1368413CrossRefGoogle Scholar
Esfandiari, F. and Khalil, H. K., “Observer-based design of uncertain systems: Recovering state feedback robustness under matching conditions,” In: Proceedings of Allerton Annual Conference on Communication, Control and Computing, University of Illinois, Monticello, IL, USA (1987) pp. 97106.Google Scholar
Tee, K. P. and Ge, S. S., “Control of fully actuated ocean surface vessels using a class of feedforward approximators,IEEE Tran. Control Syst. Technol. 14, 750756 (2006).10.1109/TCST.2006.872507CrossRefGoogle Scholar
Du, J., Hu, X., Liu, H. and Chen, C. L. P., “Adaptive robust output feedback control for marine dynamic positioning system based on a high-gain observer,IEEE Trans. Neural Networks Learn. Syst. 26, 27752786 (2015).10.1109/TNNLS.2015.2396044CrossRefGoogle ScholarPubMed
Tzafestas, S. G., Introduction to Mobile Robot Control, 1st Edition (Elsevier, New York, USA, 2014).Google Scholar
Sarkar, N., Yun, X. and Kumar, V., “Control of mechanical systems with rolling constraints application to dynamic control of mobile robots,Int. J. Rob. Res. 13(1), 5569 (1994).10.1177/027836499401300104CrossRefGoogle Scholar
Lewis, F. L., Dawson, D. M. and Abdallah, C. T., Robot Manipulator Control Theory and Practice. 2nd ed. Revised and Expanded (Marcel Dekker, New York, USA, 2004).Google Scholar
Khalil, H., Nonlinear Systems, Third Edition (Prentice Hall, Englewood Cliffs, NJ, USA, 2002).Google Scholar
Yun, X. and Yamamoto, Y., “Stability analysis of the internal dynamics of a wheeled mobile robot,J. Rob. Syst. 14(10), 697709 (1997).10.1002/(SICI)1097-4563(199710)14:10<697::AID-ROB1>3.0.CO;2-P3.0.CO;2-P>CrossRefGoogle Scholar
Wang, D. and Xu, G., “Full-state tracking and internal dynamics of nonholonomic wheeled mobile robots,IEEE/ASME Trans. Mechatron. 8(2), 203214 (2003).10.1109/TMECH.2003.812832CrossRefGoogle Scholar
Yamamoto, Y., Control and coordination of locomotion and manipulation of wheeled mobile manipulators Ph.D. Thesis (University of Pennsylvania, PA, USA, 1994).Google Scholar
Shojaei, K., Tarakameh, A. and Shahri, A. M., “Adaptive trajectory tracking of WMRs based on feedback linearization technique,” In: Proceedings of 2009 IEEE International Conference on Mechatronics and Automation (IEEE, Changchun, China, 2009) pp. 729734.10.1109/ICMA.2009.5246126CrossRefGoogle Scholar
Ge, S. S., Hang, C. C., Lee, T. H., and Zhang, T., Stable Adaptive Neural Network Control (Kluwer Academic, Boston, MA, USA, 2001).Google Scholar
Polycarpou, M. M. and Ioannou, P. A.Stable adaptive neural control scheme for nonlinear systems,” IEEE Trans. Autom. Control 41(3), 447451 (1996).10.1109/9.486648CrossRefGoogle Scholar
Shojaei, K. and Shahri, A. M., “Experimental study of iterated Kalman filters for simultaneous localization and mapping of autonomous mobile robots,J. Intell. Rob. Syst. 63(3–4), 575594 (2011).10.1007/s10846-010-9495-7CrossRefGoogle Scholar
Shojaei, K. and Shahri, A. M., “Iterated Unscented SLAM algorithm for navigation of an autonomous mobile robot,” In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008).Google Scholar
Xu, L. and Yao, B.Output feedback adaptive robust precision motion control of linear motors,” Automatica 37, 10291039 (2001).10.1016/S0005-1098(01)00052-8CrossRefGoogle Scholar
Shojaei, K., “Saturated output feedback control of uncertain nonholonomic wheeled mobile robots,Robotica 33, 87105 (2015).10.1017/S0263574714000046CrossRefGoogle Scholar