Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T08:20:30.073Z Has data issue: false hasContentIssue false

Development of a New Multi-cavity Pneumatic-driven Earthworm-like Soft Robot

Published online by Cambridge University Press:  06 May 2020

Zhijie Tang
Affiliation:
School of Mechatronic Engineering and Automation, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai 201900, China. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Jiaqi Lu*
Affiliation:
School of Mechatronic Engineering and Automation, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai 201900, China. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Zhen Wang
Affiliation:
School of Mechatronic Engineering and Automation, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai 201900, China. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Gaoqian Ma
Affiliation:
School of Mechatronic Engineering and Automation, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai 201900, China. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Weiwei Chen
Affiliation:
School of Mechatronic Engineering and Automation, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai 201900, China. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
Hao Feng
Affiliation:
School of Mechatronic Engineering and Automation, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai 201900, China. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper presents a soft robot which can imitate the crawling locomotion of an earthworm. Locomotion of the robot can be achieved by expanding and contracting the body that is made of flexible material. A link of the earthworm-like robot is combined with three modules, and a multi-cavity earthworm-like soft robot is combined with multiple links. The multiple links of the earthworm-like soft robot are fabricated by silicone in the three-dimensional printed customized molds. Experiments on a single module, two-links, and three-links show that the soft robot can move and bend on condition of modules extension and contraction in a specified gait. The development of the earthworm-like soft robot shows a great prospect in many complicated environments such as pipeline detection.

Type
Articles
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M. and Whitesides, G. M., “Multigait soft robot,” Proc. Natl. Acad. Sci. U. S. Am. 108(51), 20400 (2011).CrossRefGoogle Scholar
Hines, L., Petersen, K., Lum, G. Z. and Sitti, M., “Soft actuators for small-scale robotics,” Adv. Materials 29(13), 1603483 (2017).CrossRefGoogle ScholarPubMed
Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T. and Shepherd, R. F., “Soft robotics: Review of fluid-driven intrinsically soft devices; Manufacturing, sensing, control, and applications in human-robot interaction”, Adv. Eng. Materials 19(12), 122 (2017).CrossRefGoogle Scholar
Ecology, Behavioural, “Fungus makes tree frogs sing,” Nature 531(7593) (2016).Google Scholar
Huang, C., Lv, J., Tian, X., Wang, Y., Yu, Y. and Liu, J., “Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals,” Sci. Rep. 5(1), 17414 (2015).CrossRefGoogle ScholarPubMed
Jing, Z., Qiao, L., Pan, H., Yang, Y. and Chen, W., “An overview of the configuration and manipulation of soft robotics for on-orbit servicing,” Sci. China Inf. Sci. 60(5), 050201 (2017).10.1007/s11432-016-9033-0CrossRefGoogle Scholar
Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A. and Wood, R. J., “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature 536(7617), 451455 (2016).10.1038/nature19100CrossRefGoogle ScholarPubMed
Rus, D. and Tolley, M. T., “Design, fabrication and control of soft robots,” Nature 521(7553), 467475 (2015).10.1038/nature14543CrossRefGoogle ScholarPubMed
Miriyev, A., Stack, K. and Lipson, H., “Soft material for soft actuators,” Nat. Commun. 8(1), 19 (2017).CrossRefGoogle ScholarPubMed
Lee, W., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J. and Kim, S., “Soft robot review,” Int. J. Control Autom. Syst. 15(1), 315 (2017).10.1007/s12555-016-0462-3CrossRefGoogle Scholar
Hu, W., Guo, Z. L., Mastrangeli, M. and Sitti, M., “Small-scale soft-bodied robot with multimodal locomotion,” Nature 554(7690), 8185 (2018).CrossRefGoogle ScholarPubMed
Zhou, X., Teng, Y. and Li, X., “Development of a New Pneumatic-driven Earthworm-like Soft Robot,International Conference on Mechatronics and Machine Vision in Practice (IEEE, 2017) pp. 15.Google Scholar
Gilbertson, M. D., Mcdonald, G., Korinek, G., Van de Ven, J. D. and Kowalewski, T. M., “Serially actuated locomotion for soft robots in tube-like environments,” IEEE Robot. Autom. Lett. 2(2), 11401147 (2017).CrossRefGoogle Scholar
Digumarti, K. M., Conn, A. T. and Rossiter, J., “Euglenoid-inspired giant shape change for highly deformable soft robots,” IEEE Robot. Autom. Lett. 2(4), 23022307 (2017).CrossRefGoogle Scholar
Winstone, B., Pipe, T., Melhuish, C., Callaway, M., Etoundi, A. C. and Dogramadzi, S., “Single Motor Actuated Peristaltic Wave Generator for a Soft Bodied Worm Robot,” IEEE International Conference on Biomedical Robotics and Biomechatronics (IEEE, 2016) pp. 449456.CrossRefGoogle Scholar
Li, Y., Chen, Y. and Wei, Y., “Passive particle jamming and its stiffening of soft robotic grippers,” IEEE Trans. Robot. 33(2), 446455 (2017).CrossRefGoogle Scholar
Gunawardane, P. D. S. H., Medagedara, N. T., Madusanka, B. G. D. A. and Wijesinghe, S., “The Development of a Gesture Controlled Soft Robot Gripping Mechanism,” IEEE International Conference on Information and Automation for Sustainability (IEEE, 2017) pp. 978984.CrossRefGoogle Scholar
Calisti, M., Picardi, G. and Laschi, C., “Fundamentals of soft robot locomotion,” J. R. Soc. Interface 14(130), 116 (2017).10.1098/rsif.2017.0101CrossRefGoogle ScholarPubMed
Schaffner, M., Faber, J. A., Pianegonda, L., Ruhs, P. A., Coulter, F. and Studart, A. R., “3D printing of robotic soft actuators with programmable bioinspired architectures,” Nat. Commun. 9(1), 19 (2018).10.1038/s41467-018-03216-wCrossRefGoogle ScholarPubMed
Bilodeau, R. A., White, E. L. and Kramer, R. K., “Monolithic Fabrication of Sensors and Actuators in a Soft Robotic Gripper,IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2015) pp. 23242329.Google Scholar
Homberg, B. S., Katzschmann, R. K., Dogar, M. R. and Rus, D., “Haptic Identification of Objects Using a Modular Soft Robotic Gripper,IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2015) pp.16981705.Google Scholar
Yang, Y. and Chen, Y., “3D Printing of Smart Materials for Robotics with Variable Stiffness and Position Feedback,” IEEE International Conference on Advanced Intelligent Mechatronics (IEEE, 2017) pp. 418423.CrossRefGoogle Scholar
Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B. and Beccai, L., “Revealing bending and force in a soft body through a plant root inspired approach,” Sci. Rep. 5(12), 8788 (2015).10.1038/srep08788CrossRefGoogle Scholar
Gong, Z., Xie, Z., Yang, X., Wang, T. and Wen, L., “Design, Fabrication and Kinematic Modeling of a 3D-Motion Soft Robotic Arm,” IEEE International Conference on Robotics and Biomimetics (IEEE, 2017) pp. 509514.CrossRefGoogle Scholar
Zhou, X., Majidi, C., O’Reilly, O. M., “Flexing into motion: A locomotion mechanism for soft robots,” Int. J. Non-Linear Mech. 74(1), 717 (2015).CrossRefGoogle Scholar
Qi, Q., Teng, Y. and Li, X., “Design and Characteristic Study of a Pneumatically Actuated Earthworm-like Soft robot,International Conference on Fluid Power and Mechatronics (IEEE, 2015) pp. 435439.Google Scholar
Fei, Y. and Pang, W., “Analysis on nonlinear turning motion of multi-spherical soft robots,” Nonlinear Dyn. 88(2), 110 (2016).Google Scholar