Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-25T20:48:01.089Z Has data issue: false hasContentIssue false

Analysis of workspace boundary for multi-robot coordinated lifting system with rolling base

Published online by Cambridge University Press:  26 September 2024

Xiangtang Zhao
Affiliation:
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance, Civil Aviation Flight University of China, Guanghan, China
Zhigang Zhao*
Affiliation:
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance, Civil Aviation Flight University of China, Guanghan, China
Yagang Liu
Affiliation:
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Cheng Su
Affiliation:
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Jiadong Meng
Affiliation:
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, China Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance, Civil Aviation Flight University of China, Guanghan, China
*
Corresponding author: Zhigang Zhao; Email: [email protected]

Abstract

An improved Monte-Carlo algorithm is proposed to address the problem of an unclear workspace boundary in a multi-robot coordinated lifting system. The spatial configuration of a multi-robot coordinated lifting system with rolling base is analyzed, and the kinematics and static workspace of the system are established. To solve the workspace boundary, first, the error introduced by the layers is reduced using an intra-layer thinning method. Second, each layer is divided simultaneously based on rows and columns, and the initial boundary points are extracted by searching for the best value. Third, random three-dimensional points are added in the neighborhood, and pseudo-boundary points are removed using three-dimensional local spherical coordinates to achieve a high-precision solution for the workspace boundary. Finally, the workspace volume is used to analyze the influence of structural parameters on the workspace boundary. The results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors that affect the workspace. Findings provide a basis for further studies on the structural configuration and optimization of the lifting system.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Luo, Z. J. and Dai, J. S., “Geometry analysis and characteristics of a three-pivoted multi-phalanx robotic finger,” Proc IMechE Pt C J Mech Eng Sci 220, 18 (2006).Google Scholar
Rastegar, J. S. and Fardanesh, B., “Manipulation workspace analysis using the Monte Carlo Method,” Mech Mach Theory 25(2), 233239 (2014).CrossRefGoogle Scholar
Abdel-Malek, K., Yeh, H.-J. and Othman, S., “Interior and exterior boundary to the workspace of mechanical manipulators,” Robot Comp Inf Manuf 16(5), 365376 (2000).CrossRefGoogle Scholar
Adrián, P., Óscar, R., Arturo, G., Marín, J. M. and Payá, L., “An improved Monte Carlo method based on Gaussian growth to calculate the workspace of robots,” Eng Appl Artif Intel 64, 197207 (2017).Google Scholar
Ye, P.-D., You, J.-J., Qiu, X., Xu, S. and Ru, Y., “Interval discretization method for workspace of parallel robot,” Optics Precis Eng 29(8), 18471856 (2021).CrossRefGoogle Scholar
Ye, P. D., You, J. J. and Qiu, X., “Status and development trend of motion performance in parallel robot,” J Nanjing Univ Aeronaut Astronaut 52(3), 10052615 (2020).Google Scholar
Hong, Z. Y., Wang, H. D. and Xu, Z. H., “Analysis on workspace of 6-DOF cable-spring driven parallel mechanism,” J Mach Design 39(04), 9098 (2022).Google Scholar
L.Wang, Y., Zhao, Z. G. and Su, C., “Analysis of the workspace and dynamic stability of a multi-robot collaboratively towing system,” J Vib Shock 36(16), 4450 (2017).Google Scholar
Verhoeven, R. and Hiller, M., “Estimating the Controllable Workspace of Tendon-Based Stewart Platforms,” In: Advances in Robot Kinematics, (2000) pp. 8896.Google Scholar
Bosscher, P., Riechel, A. T. and Ebertuphoff, I., “Wrench-feasible workspace generation for cable-driven robots,” IEEE Trans Robot 22(5), 890902 (2006).CrossRefGoogle Scholar
Diao, X. and Ma, O., “A method of verifying force-closure condition for general cable manipulators with seven cables,” Mech Mach Theory 42(12), 15631576 (2007).CrossRefGoogle Scholar
Guan, Y. and Yokoi, K., “Reachable Space Generation of a Humanoid Robot Using the Monte-Carlo Method,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (2006).CrossRefGoogle Scholar
Z.Liu, Z., Liu, H. Y. and Luo, Z., “Improvement on monte carlo method for robot workspace determination,” Trans Chinese Soc Agri Mach 44(01), 230235 (2013).Google Scholar
F.Wang, D. and Li, L. H., “Solution of parallel mechanism workspace of lattice gas automata parallel search method,” Mach Design Res 36(1), 6467 (2020).Google Scholar
Khalapyan, S. Y. and Rybak, L. A., “The study of the accuracy of the robot movement along a given path considering the workspace boundary, velocity and inertial pcablerties of the drive,” J Phys Conf Ser 1582(1), 012074 (2019).CrossRefGoogle Scholar
Cao, Y., Lu, K., Li, X. and Zang, Y., “Accurate numerical methods for computing 2D and 3D robot workspace,” Int J Adv Robot Syst 8(6), 113 (2011).CrossRefGoogle Scholar
Yin, F., Wang, Y. N. and Yu, H. S., “Workspace boundary extraction of deicing robot based on monte carlo method,” Control Theory Appl 27(7), 891896 (2010).Google Scholar
Huang, J. J., Wang, P. F. and Zhang, B. W., “Redundancy design and workspace analysis of 3-PRS parallel mechanism,” J Mech Trans 46(5), 2534,41 (2022).Google Scholar
B.Xu, Z., Zhao, Z. Y. and He, S. A., “Improvement of monte carlo method for robot workspace solution and volume calculation,” Optics Precis Eng 26(11), 27032713 (2018).Google Scholar
F.Ji, F. and Zhao, X., “Solving of the workspace boundary of planar parallel mechanism based modified PSO algorithm,” J Mech Trans 43(12), 283337 (2019).Google Scholar
Li, J., Zhao, Z., Zhang, S. and Su, C., “Dynamics and workspace analysis of a multi-robot collaborative towing system with floating base,” J Mech Sci Technol 35(10), 47274735 (2021).CrossRefGoogle Scholar
Peng, Y. J. and Bu, W. H., “Analysis of reachable workspace for spatial three-cable under-constrained suspended cable-driven parallel robots,” J Mech Robot 13(6), 061002 (2021).CrossRefGoogle Scholar
Li, X. Y., He, F. and Yin, D. F., “Inverse displacement based DELTA robot work space analysis,” Micromotors 50(08), 7579 (2017).Google Scholar
Amehri, W., Zheng, G. and Kruszewski, A., “Workspace boundary estimation for soft manipulators using a continuation approach,” IEEE Robot Autom Lett 6(4), 71697176 (2021).CrossRefGoogle Scholar
C.Li, X., Yang, G. Q. and Wang, X., “Fast solution of 6-axis industrial robot workspace,” Mech Sci Technol Aerosp Eng 42(08), 12131220 (2023).Google Scholar
Ren, L. X., Omisore, O. M., Han, S. and Wang, L., “A Master-Slave Control System with Workspaces Isomerism for Teleoperation of a Snake Robot,” In: International Conference of the IEEE Engineering in Medicine and Biology Society, (2017) pp. 43434346.Google Scholar
Zhao, Z. G., Li, W. and Li, Y. D., “Analysis of static equilibrium workspace for under-constrainted cable-driven system with multi-robots,” J Syst Simul 29(4), 708713 (2017).Google Scholar
Liu, H. B., Geng, D. X. and Wu, G. B., “Research on forward kinematics of mechanical arm and workspace of its end robot hand,” Mach Tool Hydraul 50(3), 1520 (2022).Google Scholar