Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-25T00:13:52.319Z Has data issue: false hasContentIssue false

An application of natural matrices to the dynamic balance problem of planar parallel manipulators

Published online by Cambridge University Press:  19 September 2024

Jaime Gallardo-Alvarado*
Affiliation:
Department of Mechanical Engineering, National Technological Institute of Mexico/Celaya Campus, Celaya, GTO, Mexico

Abstract

This paper introduces a simplified matrix method for balancing forces and moments in planar parallel manipulators. The method resorts to Newton’s second law and the concept of angular momentum vector, yet it is not necessary to perform the velocity and acceleration analyses, tasks that were normally unavoidable in seminal contributions. With the introduction of natural matrices, the proposed balancing method is independent of the time and the trajectory generated by the moving links of parallel manipulators. The effectiveness of the method is exemplified by balancing two planar parallel manipulators.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

van der Wijk, V., Herder, J. L. and Demeulenaere, B., “Comparison of various dynamic balancing principles regarding additional mass and additional inertia,” J Mech Robot 1(4), 041006 (2009).CrossRefGoogle Scholar
Berkof, R. S. and Lowen, G. G., “A new method for completely force balancing simple linkages,” J Manuf Sci Eng 91(1), 2126 (1969).Google Scholar
Lowen, G. G. and Berkof, R. S., “Survey of investigations into the balancing of linkages,” J Mech 3(4), 221231 (1968).CrossRefGoogle Scholar
Berkof, R. S., “Complete force and moment balancing of inline four-bar linkages,” Mech Mach Theory 8(3), 397410 (1973).CrossRefGoogle Scholar
Arakelian, V. H., Dahan, M. and Smith, M. R., “Complete shaking force and partial shaking moment balancing of planar four-bar linkages,” Proc Inst Mech Eng K J Multi-body Dyn 215(1), 3134 (2001).Google Scholar
Alici, G. and Shirinzadeh, B., “Optimum synthesis of planar parallel manipulators based on kinematic isotropy and force balancing,” Robotica 22(1), 97108 (2004).CrossRefGoogle Scholar
Arakelian, V. H. and Smith, M. R., “Shaking force and shaking moment balancing of mechanisms: A historical review with new examples,” J Mech Des 127(2), 334339 (2005).CrossRefGoogle Scholar
Briot, S., Bonev, I. A., Gosselin, C. M. and Arakelian, V., “Complete shaking force and shaking moment balancing of planar parallel manipulators with prismatic pairs,” Proc Inst Mech Eng K J Multi-body Dyn 223(1), 4352 (2009).Google Scholar
Maddahi, A., Shamekhi, A. H. and Ghaffari, A., “A Lyapunov controller for self-balancing two-wheeled vehicles,” Robotica 33(1), 225239 (2015).CrossRefGoogle Scholar
Meijaard, J. P. and van der Wijk, V., “Principal vectors and equivalent mass descriptions for the equations of motion of planar four-bar mechanisms,” Multibody Syst Dyn 48(3), 259282 (2020).CrossRefGoogle Scholar
van der Wijk, V., Krut, S., Pierrot, F. and Herder, J. L., “Design and experimental evaluation of a dynamically balanced redundant planar 4-RRR parallel manipulator,” Int J Rob Res 32(6), 744759 (2013).CrossRefGoogle Scholar
Arakelian, V., Le Baron, J.-P. and Mkrtchyan, M., “Design of scotch yoke mechanisms with improved driving dynamics,” Proc Inst Mech Eng K J Multi-body Dyn 230(4), 379386 (2016).Google Scholar
Franco, J. A., Gallego, J. A. and Herder, J. L., “Static balancing of four-bar compliant mechanisms with torsion springs by exerting negative stiffness using linear spring at the instant center of rotation,” J Mech Robot 13(3), 031010 (2021).CrossRefGoogle Scholar
Yao, Y.-A. and Yan, H.-S., “A new method for torque balancing of planar linkages using non-circular gears,” Proc Inst Mech Eng C J Mech Eng Sci 217(5), 495503 (2003).CrossRefGoogle Scholar
van der Wijk, V., Krut, S., Pierrot, F. and Herder, J. L., “Design and experimental evaluation of a dynamically balanced redundant planar 4-RRR parallel manipulator,” Int J Rob Res 32(6), 744759 (2013a).CrossRefGoogle Scholar
Woo, S. H., Kim, S. M., Kim, M. G., Yi, B.-J. and Kim, W., “Torque-balancing algorithm for the redundantly actuated parallel mechanism,” Mechatronics 42, 4151 (2017).CrossRefGoogle Scholar
Baron, N., Philippides, A. and Rojas, N., “A dynamically balanced kinematically redundant planar parallel robot,” J Mech Des 143(8), 083301 (2021).CrossRefGoogle Scholar
Nygards, T. and Berbyuk, V., “Multibody modeling and vibration dynamics analysis of washing machines,” Multibody Syst Dyn 27(2), 197238 (2012).CrossRefGoogle Scholar
van der Wijk, V., Krut, S., Pierrot, F. and Herder, J. L., “Design and experimental evaluation of a dynamically balanced redundant planar 4-RRR parallel manipulator,” Int J Robot Res 32(6), 744759 (2013b).CrossRefGoogle Scholar
Lim, T. G., Cho, H. S. and Chung, W. K., “Payload capacity of balanced robotic manipulators,” Robotica 8(2), 117123 (1990).CrossRefGoogle Scholar
Xi, F., “Dynamic balancing of hexapods for high-speed applications,” Robotica 17(3), 335342 (1999).CrossRefGoogle Scholar
de Jong, J. J., Müller, A. and Herder, J. L., “Higher-order derivatives of rigid body dynamics with application to the dynamic balance of spatial linkages,” Mech Mach Theory 155, 104059 (2021).CrossRefGoogle Scholar
Gallardo-Alvarado, J., “A simple matrix method for the force balancing of planar multi-degree-of-freedom linkages,” Int J Mech Eng Educ 03064190241255639 (2024).CrossRefGoogle Scholar
Wei, B. and Zhang, D., “A review of dynamic balancing for robotic mechanisms,” Robotica 39(1), 5571 (2021).CrossRefGoogle Scholar
Benedict, C. E. and Tesar, D., “Dynamic response analysis of quasi-rigid mechanical systems using kinematic influence coefficients,” J Mech 6(4), 383403 (1971).CrossRefGoogle Scholar
Gallardo-Alvarado, J. and Rico-Martinez, J. M., “Jerk influence coefficients, via screw theory, of closed chains,” Meccanica 36(2), 213228 (2001).CrossRefGoogle Scholar
Schiehlen, W. and Eberhard, P., Technische Dynamik. 6 edn, (Springer Vieweg Wiesbaden, Germany, 2020). doi: 10.1007/978-3-658-31373-9.CrossRefGoogle Scholar
Lin, J.-L. and Yan, H.-S., “Reconstruction designs of the lost structures of the Antikythera mechanism with two degrees of freedom,” J Mech Robot 6(3), 031016 (2014).CrossRefGoogle Scholar
Tong, S.-H., “Design of high-stiffness five-bar and seven-bar linkage structures by using the concept of orthogonal paths,” J Mech Des 128(2), 430435 (2006).CrossRefGoogle Scholar
Ouyang, P. R., Zhang, W. J. and Gupta, M. M., “A new compliant mechanical amplifier based on a symmetric five-bar topology,” J Mech Des 130(10), 104501 (2008).CrossRefGoogle Scholar
Ting, K.-L., Wang, J., Xue, C. and Currie, K. R., “Full rotatability and singularity of six-bar and geared five-bar linkages,” J Mech Robot 2(1), 011011 (2010).CrossRefGoogle Scholar
Joubair, A., Slamani, M. and Bonev, I. A., “Kinematic calibration of a five-bar planar parallel robot using all working modes,” Robot Comput Integr Manuf 29(4), 1525 (2013).CrossRefGoogle Scholar
Ruiz-Torres, M. F., Castillo-Castaneda, E. and Briones-Leon, J. A., “Design and analysis of CICABOT: A novel translational parallel manipulator based on two 5-bar mechanisms,” Robotica 30(3), 449456 (2012).CrossRefGoogle Scholar
Zi, B., Sun, H. and Zhang, D., “Design, analysis and control of a winding hybrid-driven cable parallel manipulator,” Robot Comput Integr Manuf 48, 196208 (2017).CrossRefGoogle Scholar
Cui, L., Isaac, A. and Allison, G., “Design and development of a five-bar robot for research into lower extremity proprioception,” Robotica 36(2), 298311 (2018).CrossRefGoogle Scholar
Essomba, T. and Vu, L. N., “Kinematic analysis of a new five-bar spherical decoupled mechanism with two-degrees of freedom remote center of motion,” Mech Mach Theory 119, 184197 (2018).CrossRefGoogle Scholar
Briot, S. and Goldsztejn, A., “Topology optimization of industrial robots: Application to a five-bar mechanism,” Mech Mach Theory 120, 3056 (2018).CrossRefGoogle Scholar
Xie, Q., Liu, S. and Jiang, H., “Design of a passive constant-force mechanism based on a five-bar mechanism,” Mech Mach Theory 143, 103662 (2020).CrossRefGoogle Scholar
Lia, D. and Sinatra, R., “A novel formulation of the dynamic balancing of five-bar linkages with applications to link optimization,” Multibody Syst Dyn 21(2), 193211 (2009).Google Scholar
Lecours, A. and Gosselin, C., “Reactionless two-degree-of-freedom planar parallel mechanism with variable payload,” J Mech Robot 2(4), 041010 (2010).CrossRefGoogle Scholar
de Jong, J., van Dijk, J. and Herder, J., “A Screw-Based Dynamic Balancing Approach, Applied to a 5-Bar Mechanism,” In: Advances in Robot Kinematics 2016, (Lenarčič, J. and Merlet, J.-P., eds.) (Springer International Publishing, Cham, 2018) pp. 3341.CrossRefGoogle Scholar
Lambert, P. and Herder, J. L., “Parallel robots with configurable platforms: Fundamental aspects of a new class of robotic architectures,” Proc Inst Mech Eng Part C J Mech Eng Sci 230(1), 1147 (2016).CrossRefGoogle Scholar
Gallardo-Alvarado, J., Garcia-Murillo, M. A. and Rodriguez-Castro, R. R., “Kinematics of a nine-legged in-parallel manipulator with configurable platform,” Robotica 40(12), 44554474 (2022).CrossRefGoogle Scholar
Gallardo-Alvarado, J., “Kinematics of a novel nine-degree-of-freedom configurable Gough–Stewart platform,” Iran J Sci Technol Trans Mech Eng 47(4), 21012119 (2023).CrossRefGoogle Scholar
Gallardo-Alvarado, J., Tinajero-Campos, J. H. and Sanchez-Rodriguez, A., “Kinematics of a configurable manipulator using screw theory,” RIAI 18(1), 5867 (2021).CrossRefGoogle Scholar
Firmani, F., Zibil, A., Nokleby, S. B. and Podhorodeski, R. P., “Wrench capabilities of planar parallel manipulators. part II: Redundancy and wrench workspace analysis,” Robotica 26(6), 803815 (2008).CrossRefGoogle Scholar
Muller, A., “Internal preload control of redundantly actuated parallel manipulators—its application to backlash avoiding control,” IEEE Trans Robot 21(4), 668677 (2005).CrossRefGoogle Scholar
Liu, Y., Wu, J., Wang, L. and Wang, J., “Determination of the maximal singularity-free zone of 4-RRR redundant parallel manipulators and its application on investigating length ratios of links,” Robotica 34(9), 20392055 (2016).CrossRefGoogle Scholar
Zahedi, A., Shafei, A. M. and Shamsi, M., “Kinetics of planar constrained robotic mechanisms with multiple closed loops: An experimental study,” Mech Mach Theory 183, 105250 (2023).CrossRefGoogle Scholar