Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T01:59:53.615Z Has data issue: false hasContentIssue false

Adaptive lead-through teaching control for spray-painting robot with closed control system

Published online by Cambridge University Press:  12 December 2022

Yajun Liu
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
Bin Zi*
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China
Zhengyu Wang
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
Sen Qian
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
Lei Zheng
Affiliation:
EFORT Intelligent Equipment Co., Ltd., Wuhu 241007, China CMA (WUHU) Robotics Co., Ltd., Wuhu 241007, China
Lijun Jiang
Affiliation:
EFORT Intelligent Equipment Co., Ltd., Wuhu 241007, China
*
*Corresponding author. E-mail: [email protected]

Abstract

Industrial robots are widely used in the painting industry, such as automobile manufacturing and solid wood furniture industry. An important problem is how to improve the efficiency of robot programming, especially in the current furniture industry with multiple products, small batches and increasingly high demand for customization. In this work, we propose an outer loop adaptive control scheme, which allow users to realize the practical application of the zero-moment lead-through teaching method based on dynamic model without opening the inner torque control interface of robots. In order to accurately estimate the influence of joint friction, a friction model is established based on static, Coulomb and viscous friction characteristics, and the Sigmoid function is used to represent the transition between motion states. An identification method is used to quickly identify the dynamic parameters of the robot. The joint position/speed command of the robot’s inner joint servo loop is dynamically generated based on the user-designed adaptive control law. In addition, the zero-moment lead-through teaching scheme based on the dynamic model is applied to a spray-painting robot with closed control system. In order to verify our method, CMA GR630ST is used to conduct experiments. We identified the parameters of the dynamic model and carried out the zero-moment lead-through teaching experiment to track the target trajectory. The results show that the proposed method can realize the application of modern control methods in industrial robot with closed control systems, and achieve a preliminary exploration to improve the application scenarios of spray-painting robots.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, J., Wang, X., Zhang, B. and Huang, T., “Multi-objective optimal design of a novel 6-DOF spray-painting robot,” Robotica 39(12), 22682282 (2021). doi: 10.1017/S026357472100031X.CrossRefGoogle Scholar
Pan, Z., Polden, J., Larkin, N., Van Duin, S. and Norrish, J., “Recent progress on programming methods for industrial robots,” Robot Cim-Int. Manuf. 28(2), 8794 (2012). doi: 10.1016/j.rcim.2011.08.004.CrossRefGoogle Scholar
Burghardt, A., Szybicki, D., Gierlak, P., Kurc, K., Pietruś, P. and Cygan, R., “Programming of industrial robots using virtual reality and digital twins,” Appl. Sci. 10(2), 486 (2020). doi: 10.3390/app10020486.CrossRefGoogle Scholar
Wu, J., Zhang, B. and Wang, L., “A measure for evaluation of maximum acceleration of redundant and nonredundant parallel manipulators,” J. Mech. Robot. 8(2), 021001 (2016). doi: 10.1115/1.4031500.CrossRefGoogle Scholar
Zhang, B., Wu, J., Wang, L. and Yu, Z., “A method to realize accurate dynamic feedforward control of a spray-painting robot for airplane wings,” IEEE/ASME Trans. Mech. 23(3), 11821192 (2018). doi: 10.1109/TMECH.2018.2817884.Google Scholar
Qian, S., Zi, B., Shang, W. W. and Xu, Q. S., “A review on cable-driven parallel robots,” Chin. J. Mech. Eng. 31(1), 111 (2018). doi: 10.1186/s10033-018-0267-9.CrossRefGoogle Scholar
Li, Y., Zi, B., Zhou, B., Zhao, P. and Ge, Q. J., “Cable angle and minimum resultant force response analysis of lower limb traction device for rehabilitation robot with interval parameters,” ASME J. Inf. Sci. Eng. 21(2), 021002 (2021). doi: 10.1115/1.4048126.Google Scholar
Brogårdh, T., “Present and future robot control development—An industrial perspective,” Ann. Rev. Control 31(1), 6979 (2007). doi: 10.1016/j.arcontrol.2007.01.002.CrossRefGoogle Scholar
Nilsson, K. and Johansson, R., “Integrated architecture for industrial robot programming and control,” Rob. Auton. Syst. 29(4), 205226 (1999). doi: 10.1016/S0921-8890(99)00056-1.CrossRefGoogle Scholar
Fu, X. and Li, Y., “Research on the Direct Teaching Method of Robot Based on Admittance Control,” In: International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1 (2020) pp. 4852. doi: 10.1109/IHMSC49165.2020.00019.CrossRefGoogle Scholar
Park, D. I., Park, C. and Kyung, J. H., “Design and Analysis of Direct Teaching Robot for Human-Robot Cooperation,” In: IEEE International Symposium on Assembly and Manufacturing (2009) pp. 220224. doi: 10.1109/ISAM.2009.5376967.CrossRefGoogle Scholar
Keemink, A. Q., van der Kooij, H. and Stienen, A. H., “Admittance control for physical human-robot interaction,” Int. J. Rob. Res. 37(11), 201814211444 (2018). doi: 10.1177/0278364918768950.CrossRefGoogle Scholar
Mujica, M., Crespo, M., Benoussaad, M., Junco, S. and Fourquet, J. Y., “Robust variable admittance control for human-robot co-manipulation of objects with unknown load,” Robot. Cim-Int. Manuf. 79, 2023102408 (2023). doi: 10.1016/j.rcim.2022.102408.CrossRefGoogle Scholar
Ali, M. and Atia, M., “A lead through approach for programming a welding arm robot using machine vision,” Robotica 40(3), 464474 (2022). doi: 10.1017/S026357472100059X.CrossRefGoogle Scholar
Lin, H., Tang, T., Fan, Y., Zhao, Y., Tomizuka, M. and Chen, W., “Robot Learning from Human Demonstration with Remote Lead through Teaching,” In: 2016 European Control Conference (ECC) (2016) pp. 388394. doi: 10.1109/ECC.2016.7810316.CrossRefGoogle Scholar
Zhang, J., Wang, Y. and Xiong, R., “Industrial Robot Programming by Demonstration,” In: International Conference on Advanced Robotics and Mechatronics (ICARM) (2016) pp. 300305. doi: 10.1109/ICARM.2016.7606936.CrossRefGoogle Scholar
Ott, C., Ott, C., Kugi, A. and Hirzinger, G., “On the passivity-based impedance control of flexible joint robots,” IEEE Trans. Robot. 24(2), 416429 (2008). doi: 10.1109/TRO.2008.915438.CrossRefGoogle Scholar
Keppler, M., Lakatos, D., Ott, C. and A. Albu-Schaffer, “Elastic Structure Preserving Impedance (ESπ) Control for Compliantly Actuated Robots,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018) pp. 58615868. doi: 10.1109/IROS.2018.8593415.CrossRefGoogle Scholar
Ragaglia, M., Zanchettin, A. M., Bascetta, L. and Rocco, P., “Accurate sensorless lead-through programming for lightweight robots in structured environments,” Robot. Cim-Int. Manuf. 39, 921 (2016). doi: 10.1016/j.rcim.2015.11.002.CrossRefGoogle Scholar
Canfield, S. L., Owens, J. S. and Zuccaro, S. G., “Zero moment control for lead-through teach programming and process monitoring of a collaborative welding robot,” J. Mech. Robot. 13(3), (2021). doi: 10.1115/1.4050102.CrossRefGoogle Scholar
Zeng, F., Xiao, J. and Liu, H., “Force/torque sensorless compliant control strategy for assembly tasks using a 6-DOF collaborative robot,” IEEE Access 7, 108795108805 (2019). doi: 10.1109/ACCESS.2019.2931515.CrossRefGoogle Scholar
Ott, C., Albu-Schaffer, A., Kugi, A. and Hirzinger, G., “Decoupling Based Cartesian Impedance Control of Flexible Joint Robots,” In: IEEE International Conference on Robotics and Automation, vol. 3 (2003) pp. 31013107. doi: 10.1109/ROBOT.2003.1242067.CrossRefGoogle Scholar
Focchi, M., Medrano-Cerda, G. A., Boaventura, T., Frigerio, M., Semini, C., Buchli, J. and Caldwell, D. G., “Robot impedance control and passivity analysis with inner torque and velocity feedback loops,” Control Theory Technol. 14(2), 97112 (2016). doi: 10.1007/s11768-016-5015-z.CrossRefGoogle Scholar
Kana, S., Tee, K. P. and Campolo, D., “Human-robot co-manipulation during surface tooling: a general framework based on impedance control, haptic rendering and discrete geometry,” Robot. Cim-Int. Manuf. 67, 102033 (2021). doi: 10.1016/j.rcim.2020.102033.CrossRefGoogle Scholar
Sadeghian, H., Villani, L., Keshmiri, M. and Siciliano, B., “Task-space control of robot manipulators with null-space compliance,” IEEE Trans. Robot. 99(2), 114 (2013). doi: 10.1109/TRO.2013.2291630.Google Scholar
Sadeghian, H., Keshmiri, M., Villani, L. and Siciliano, B., “Null-Space Impedance Control with Disturbance Observer,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012) pp. 27952800. doi: 10.1109/IROS.2012.6385690.CrossRefGoogle Scholar
De Luca, A. and Mattone, R., “Sensorless Robot Collision Detection and Hybrid Force/Motion Control,” In: IEEE International Conference on Robotics and Automation (2005) pp. 9991004. doi: 10.1109/ROBOT.2005.1570247.CrossRefGoogle Scholar
Erden, M. and Tomiyama, T., “Human-intent detection and physically interactive control of a robot without force sensors,” IEEE Trans. Robot. 26(2), 370382 (2010). doi: 10.1109/TRO.2010.2040202.CrossRefGoogle Scholar
Song, P., Yu, Y. and Zhang, X., “Impedance Control of Robots: An Overview,” In: 2nd International Conference on Cybernetics, Robotics and Control (CRC) (2017) pp. 5155. doi: 10.1109/CRC.2017.20.CrossRefGoogle Scholar
Ahanda, J. J. B. M., Aba, C. M., Melingui, A. Zobo, B. E. and Merzouki, R., “Task-space control for industrial robot manipulators with unknown inner loop control architecture,” J. Franklin I 359(12), 62866310 (2022). doi: 10.1016/j.jfranklin.2022.05.052.CrossRefGoogle Scholar
Liang, X., Wang, H., Chen, W. and Liu, Y. H., “Uncalibrated image-based visual servoing of rigid-link electrically driven robotic manipulators,” Asian J. Control 16(3), 714728 (2014). doi: 10.1002/asjc.796.CrossRefGoogle Scholar
Leite, A. C., A. R. Zachi, F. Lizarralde and L. Hsu, “Adaptive 3D visual servoing without image velocity measurement for uncertain manipulators,” IFAC Proc. 44(1), 1458414589 (2011). doi: 10.3182/20110828-6-IT-1002.03335.Google Scholar
Wang, H., Ren, W., Cheah, C. C. and Xie, Y., “Dynamic Modularity Approach to Adaptive Inner/Outer Loop Control of Robotic Systems,” In: Chinese Control Conference (2016) pp. 32493255. doi: 10.1109/ChiCC.2016.7553858.CrossRefGoogle Scholar
Wang, H., Ren, W., Cheah, C. C., Xie, Y. and Lyu, S., “Dynamic modularity approach to adaptive control of robotic systems with closed architecture,” IEEE Trans. Automat. Control 65(6), 27602767 (2019). doi: 10.1109/TAC.2019.2922450.CrossRefGoogle Scholar
Spong, M. W., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control (John Wiley & Sons, New York, (2020).Google Scholar
Lee, S. D., Kim, M. C. and Song, J. B., “Sensorless Collision Detection for Safe Human-Robot Collaboration,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2015) pp. 23922397. doi: 10.1109/IROS.2015.7353701.CrossRefGoogle Scholar
Xiao, J., Zhang, Q., Hong, Y., Wang, G. and Zeng, F., “Collision detection algorithm for collaborative robots considering joint friction,” Int. J. Adv. Robot. Syst. 15(4), 1729881418788992 (2018). doi: 10.1177/1729881418788992.CrossRefGoogle Scholar
Grotjahn, M., Daemi, M. and Heimann, B., “Friction and rigid body identification of robot dynamics,” Int. J. Solids. Struct. 38(10-13), 18891902 (2001). doi: 10.1016/S0020-7683(00)00141-4.CrossRefGoogle Scholar
Mamedov, S. and Mikhel, S., “Practical aspects of model-based collision detection,” Front Robot. AI 7, 571574572020 (2020). doi: 10.3389/frobt.2020.571574.CrossRefGoogle ScholarPubMed
Gautier, M., “Numerical calculation of the base inertial parameters of robots,” J. Robot. Syst. 8(4), 485506 (1991). doi: 10.1002/rob.4620080405.CrossRefGoogle Scholar
Gaz, C., Flacco, F. and De Luca, A., “Identifying the Dynamic Model Used by the KUKA LWR: A Reverse Engineering Approach,” In: IEEE International Conference on Robotics and Automation (ICRA) (2014) pp. 13861392. doi: 10.1109/ICRA.2014.6907033.CrossRefGoogle Scholar
Zhou, B., Zi, B. and Qian, S., “Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty,” Nonlinear Dyn. 90(4), 25992626 (2017). doi: 10.1007/s11071-017-3826-1.CrossRefGoogle Scholar
Ciliz, M. K., “Combined direct and indirect adaptive control of robot manipulators using multiple models,” Adv. Robot. 20(4), 483497 (2006). doi: 10.1163/156855306776562242.CrossRefGoogle Scholar