Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-25T12:22:19.222Z Has data issue: false hasContentIssue false

A 2D-LiDAR-based localization method for indoor mobile robots using correlative scan matching

Published online by Cambridge University Press:  04 December 2024

Song Du
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
Tao Chen
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
Zhonghui Lou
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
Yijie Wu*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
*
Corresponding author: Yijie Wu; Email: [email protected]

Abstract

Precise pose estimation is crucial to various robots. In this paper, we present a localization method using correlative scan matching (CSM) technique for indoor mobile robots equipped with 2D-LiDAR to provide precise and fast pose estimation based on the common occupancy map. A pose tracking module and a global localization module are included in our method. On the one hand, the pose tracking module corrects accumulated odometry errors by CSM in the classical Bayesian filtering framework. A low-pass filter associating the predictive pose from odometer with the corrected pose by CSM is applied to improve precision and smoothness of the pose tracking module. On the other hand, our localization method can autonomously detect localization failures with several designed trigger criteria. Once a localization failure occurs, the global localization module can recover correct robot pose quickly by leveraging branch-and-bound method that can minimize the volume of CSM-evaluated candidates. Our localization method has been validated extensively in simulated, public dataset-based, and real environments. The experimental results reveal that the proposed method achieves high-precision, real-time pose estimation, and quick pose retrieve and outperforms other compared methods.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yilmaz, A. and Temeltas, H., “A multi-stage localization framework for accurate and precise docking of autonomous mobile robots (AMRs),” Robotica 1-24(6), 18851908 (2024). doi: 10.1017/S0263574724000602.CrossRefGoogle Scholar
Borenstein, J., Everett, H. R. and Feng, L.. Navigating Mobile Robots: Systems and Techniques (Peters A.K Ltd/CRC Press, New York, 1996).Google Scholar
Burgard, W., Derr, A., Fox, D. and Cremers, A. B., “Integrating Global Position Estimation and Position Tracking for Mobile Robots: The Dynamic Markov Localization Approach, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 730735 (1998). doi: 10.1109/IROS.1998.727279.Google Scholar
Peng, C. and Weikersdorfer, D., “Map As the Hidden Sensor: Fast Odometry-Based Global Localization,” In IEEE International Conference on Robotics and Automation (ICRA), pp. 23172323 (2020). doi: https://doi.org/10.1109/ICRA40945.2020.9197225.CrossRefGoogle Scholar
Burgard, W., Fox, D. and Hennig, D., “Fast Grid-based Position Tracking for Mobile Robots,” In: KI-97: Advances in Artificial Intelligence. vol. 1303 (2005) pp. 289300 . doi: 10.1007/3540634932_23.Google Scholar
Gutmann, J.-S., Burgard, W., Fox, D. and Konolige, K., “An Experimental Comparison of Localization Methods,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp.736743 (1998). doi: 10.1109/IROS.1998.727280.Google Scholar
Besl, P. J. and McKay, N. D., “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. 14(2), 239-12–256 (1992). doi: 10.1109/34.121791.CrossRefGoogle Scholar
Minguez, J., Lamiraux, F. and Montesano, L., “Metric-Based Scan Matching Algorithms for Mobile Robot Displacement Estimation,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 35573563 (2005). doi: 10.1109/ROBOT.2005.1570661.Google Scholar
Censi, A., “An ICP Variant Using a Point-to-Line Metric,” In: IEEE International Conference on Robotics and Automation (ICRA), pp.1925 (2008). doi: 10.1109/ROBOT.2008.4543181.Google Scholar
Segal, A. V., Haehnel, D. and Thrun, S., “Generalized-ICP, In: Robotics: Science and Systems (RSS) (2009). doi: 10.15607/RSS.2009.V.021.Google Scholar
Serafin, J. and Grisetti, G., “NICP: Dense Normal Based Point Cloud Registration,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 742749 (2015). doi: 10.1109/IROS.2015.7353455.Google Scholar
Biber, P. and Strasser, W., “The Normal Distributions Transform: A New Approach to Laser Scan Matching,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 27432748 (2003). doi: https://doi.org/10.1109/IROS.2003.1249285.Google Scholar
Magnusson, M., Lilienthal, A. and Duckett, T., “Scan registration for autonomous mining vehicles using 3D-NDT,” J. Field Robot. 24(10), 803827 (2007). doi: 10.1002/rob.20204.CrossRefGoogle Scholar
Olson, E. B., “Real-Time Correlative Scan Matching,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 43874393 (2009). doi: 10.1109/ROBOT.2009.5152375.Google Scholar
Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B. and Vincent, R., “Efficient Sparse Pose Adjustment for 2D Mapping,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2229 (2010). doi: 10.1109/IROS.2010.5649043.Google Scholar
Hess, W., Kohler, D., Rapp, H. and Andor, D., “Real-Time Loop Closure in 2D LiDAR SLAM,” In: IEEE International Conference on Robotics and Automation (ICRA), pp.12711278 (2016). doi: 10.1109/ICRA.2016.7487258.Google Scholar
Dellaert, F., Fox, D., Burgard, W. and Thrun, S., “Monte Carlo Localization for Mobile Robots,” In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 13221328 (1999). doi: 10.1109/ROBOT.1999.772544.Google Scholar
Fox, D., Burgard, W., Dellaert, F. and Thrun, S., “Monte Carlo Localization: Efficient Position Estimation for Mobile Robots,” In: National Conference on Artificial Intelligence, pp. 343349 (1999). doi: 10.5555/315149.315322.Google Scholar
Röwekämper, J., Sprunk, C., Tipaldi, G. D., Stachniss, C., Pfaff, P. and Burgard, W., “On the Position Accuracy of Mobile Robot Localization Based on Particle Filters Combined with Scan Matching,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 31583164 (2012). doi: 10.1109/IROS.2012.6385988.Google Scholar
Vasiljević, G., Miklić, D., Draganjac, I., Kovačić, Z. and Lista, P., “High-accuracy vehicle localization for autonomous warehousing,” Robot. Comput.-Integr. Manufact. 42, 116 (2016). doi: 10.1016/j.rcim.2016.05.001.CrossRefGoogle Scholar
Saarinen, J., Andreasson, H., Stoyanov, T. and Lilienthal, A. J., “Normal Distributions Transform Monte-Carlo Localization (NDT-MCL),” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 382389 (2013). doi: 10.1109/IROS.2013.6696380.Google Scholar
Saarinen, J., Andreasson, H., Stoyanov, T., Ala-Luhtala, J. and Lilienthal, A. J., “Normal Distributions Transform Occupancy Maps: Application to Large-Scale Online 3D Mapping,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 22332238 (2013). doi: 10.1109/ICRA.2013.6630878.Google Scholar
Akai, N., “Reliable Monte Carlo localization for mobile robots,” J. Field Robot. 40(3), 595-2–613-2149 (2023). doi: 10.1002/rob CrossRefGoogle Scholar
Yekkehfallah, M., Yang, M., Cai, Z., Li, L. and Wang, C., “Accurate 3D localization using RGB-TOF camera and IMU for industrial mobile robots,” Robotica 39(10), 18161833 (2021). doi: 10.1017/S0263574720001526.CrossRefGoogle Scholar
Ma, T., Jiang, G., Ou, Y. and Xu, S., “Semantic geometric fusion multi-object tracking and lidar odometry in dynamic environment,” Robotica 42(3), 891910 (2024). doi: 10.1017/S0263574723001868.CrossRefGoogle Scholar
Gutmann, J.-S., Weigel, T. and Nebel, B., “A fast, accurate, and robust method for self-localization in polygonal environments using laser range finders,” Adv. Robot. 14(8), 651668 (2001). doi: 10.1163/156855301750078720.CrossRefGoogle Scholar
Zhao, S., Fang, Z., Li, H. and Scherer, S., “A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 12851292 (2019). doi: 10.1109/IROS40897.2019.8967880.Google Scholar
Liu, H., Ye, Q., Wang, H., Chen, L. and Yang, J., “A precise and robust segmentation-based LiDAR localization system for automated urban driving,” Remote Sens. 11(11), 1348 (2019). doi: 10.3390/rs11111348.CrossRefGoogle Scholar
Zhang, Y., Wang, L., Jiang, X., Zeng, Y. and Dai, Y., “An efficient LiDAR-based localization method for self-driving cars in dynamic environments,” Robotica 40(1), 3855 (2022). doi: 10.1017/S0263574721000369.CrossRefGoogle Scholar
Thrun, S., Burgard, W. and Fox, D.. Probabilistic Robotics (MIT Press, 2005).Google Scholar
Fox, D., Burgard, W., Thrun, S. and Cremers, A., “Position Estimation for Mobile Robots in Dynamic Environments,” In: National Conference on Artificial Intelligence, pp. 983988 (1998). doi: 10.5555/295240.295940.Google Scholar
Konolige, K. and Chou, K., “Markov localization Using Correlation,” In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 16, pp. 11541159 (1999). doi: 10.5555/1624312.1624383.Google Scholar
Censi, A., A comparison of algorithms for likelihood approximation in Bayesian localization (2006). https://api.semanticscholar.org/CorpusID:13736376.Google Scholar
Gutmann, J.-S. and Fox, D., “An Experimental Comparison of Localization Methods Continued,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)., vol. 1, pp. 454-104–459 (2002). doi: 10.1109/IRDS.2002.1041432 .Google Scholar
Fox, D., “Adapting the sample size in particle filters through KLD-sampling,” Int. J. Robot. Res. 22(12), 9851003 (2003). doi: 10.1177/0278364903022012001.CrossRefGoogle Scholar
Ueda, R., Arai, T., Sakamoto, K., Kikuchi, T. and Kamiya, S., “Expansion Resetting for Recovery from Fatal error in Monte Carlo localization - Comparison with Sensor Resetting Methods,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)., vol. 3, pp. 24812486 (2004). doi: 10.1109/IROS.2004.1389781.Google Scholar
Blanco, J., Gonzalez, J. and Fernandez-Madrigal, J., “An Optimal Filtering Algorithm for Non-parametric Observation Models in Robot Localization,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 461466 (2008). doi: 10.1109/ROBOT.2008.4543250.Google Scholar
Liu, Q., Di, X. and Xu, B., “Autonomous vehicle self-localization in urban environments based on 3D curvature feature points – Monte Carlo localization,” Robotica 40(3), 817833 (2022). doi: 10.1017/S0263574721000862.CrossRefGoogle Scholar
Jaimez, M., Monroy, J. G. and Gonzalez-Jimenez, J., “Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 44794485 (2016). doi: 10.1109/ICRA.2016.7487647.Google Scholar
Gonzalez, J. and Gutierrez, R., “Direct motion estimation from a range scan sequence,” J. Robot. Syst. 16(2), 7380 (1999). doi: 10.1002/(SICI)1097-4563(199902)16:2%3C73::AID-ROB1%3E3.0.CO;2-7,3.0.CO;2-7>CrossRefGoogle Scholar
Jaimez, M., Monroy, J., Lopez-Antequera, M. and Gonzalez-Jimenez, J., “Robust planar odometry based on symmetric range flow and multiscan alignment,” IEEE Trans. Robot. 34(6), 1623-286 (2018). doi: 10.1109/TRO.2018.2861911 .CrossRefGoogle Scholar
Ding, W., Hou, S., Gao, H., Wan, G. and Song, S., “LiDAR Inertial Odometry Aided Robust LiDAR Localization System in Changing City Scenes,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4322-9–4328 (2020). doi: 10.1109/ICRA40945.2020.9196698.CrossRefGoogle Scholar
Macenski, S. and Jambrecic, I., “SLAM toolbox: SLAM for the dynamic world,” J. Open Source Softw. 6(61), 2783 (2021). doi: 10.21105/joss.02783.CrossRefGoogle Scholar
Li, R., Zhang, X., Zhang, S., Yuan, J., Liu, H. and Wu, S., “BA-LIOM: Tightly coupled laser-inertial odometry and mapping with bundle adjustment,” Robotica 42(3), 684700 (2024). doi: 10.1017/S0263574723001698.CrossRefGoogle Scholar
Aoki, K., Koide, K., Oishi, S., Yokozuka, M., Banno, A. and Meguro, J., “3D-BBS: Global Localization for 3D Point Cloud Scan Matching Using Branch-and-Bound Algorithm,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 17961802 (2024). doi: 10.48550/arXiv.2310.10023.Google Scholar
Kim, G., Park, B. and Kim, A., “1-day learning, 1-year localization: Long-term LiDAR localization using scan context image,” IEEE Robot. Automat. Lett. 4(2), 19481955 (2019). doi: 10.1109/LRA.2019.2897340.CrossRefGoogle Scholar
Ratz, S., Dymczyk, M., Siegwart, R. and Dubé, R., “OneShot Global Localization: Instant LiDAR-Visual Pose Estimation,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 54155421 (2020). doi: 10.1109/ICRA40945.2020.CrossRefGoogle Scholar
Akai, N., Hirayama, T. and Murase, H., “Hybrid Localization using Model-and Learning-Based Methods: Fusion of Monte Carlo and E2E Localizations via Importance Sampling,” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 64696475 (2020). doi: 10.1109/ICRA40945.2020.9197458.CrossRefGoogle Scholar
Ma, J., Zhang, J., Xu, J., Ai, R., Gu, W. and Chen, X., “OverlapTransformer: An efficient and Yaw-Angle-invariant transformer network for LiDAR-based place recognition,” IEEE Robot. Automat. Lett. 7(3), 69586965 (2022). doi: 10.1109/LRA.2022.3178797.CrossRefGoogle Scholar
Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D., “A Benchmark for the Evaluation of RGB-D SLAM Systems,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573580 (2012). doi: 10.1109/IROS.2012.6385773.Google Scholar
Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C. and Kleiner, A., “On measuring the accuracy of SLAM algorithms,” Autonom. Robot. 27(4), 387407 (2009). doi: 10.1007/s10514-009-9155-6.CrossRefGoogle Scholar
Morrison, D. R., Jacobson, S. H., Sauppe, J. J. and Sewell, E. C., “Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning,” Discr. Optim. 19, 79102 (2016). doi: 10.1016/j.disopt.2016.01.005.CrossRefGoogle Scholar