Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T17:06:10.956Z Has data issue: false hasContentIssue false

Effects of oligonucleotide length and atomic composition on stimulation of the ATPase activity of translation initiation factor eIF4A

Published online by Cambridge University Press:  01 September 1999

MATTHEW L. PECK
Affiliation:
Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
DANIEL HERSCHLAG
Affiliation:
Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
Get access

Abstract

Eukaryotic translation initiation factor 4A (eIF4A) has been proposed to use the energy of ATP hydrolysis to remove RNA structure in the 5′ untranslated region (UTR) of mRNAs, helping the 43S ribosomal complex bind to an mRNA and scan to find the 5′-most AUG initiator codon. We have examined the effect of changing the atomic composition and length of single-stranded oligonucleotides on binding to eIF4A and on stimulation of its ATPase activity once bound. Substitution of 2′-OH groups with 2′-H or 2′-OCH3 groups reduces ATPase stimulation at least 100-fold, to background levels, without significantly affecting oligonucleotide affinity. These effects suggest that 2′-OH groups participate in an eIF4A conformational change that occurs subsequent to oligonucleotide binding and is required for ATPase stimulation. Replacing nonbridging oxygen atoms in phosphodiester linkages with sulfur atoms to make phosphorothioate linkages has no significant effect on stimulation, while substantially increasing affinity. Extending the length of an RNA oligonucleotide from 4 to ∼15 nt gradually increases oligonucleotide affinity and ATPase stimulation. Consistent with this observation, the increase in affinity and stimulation provided by phosphorothioate linkages and 2′-OH groups is proportional to the number of these groups present within larger oligonucleotides. Further, changing the position of blocks of phosphorothioate linkages or 2′-OH groups within a larger oligonucleotide does not affect affinity and has only a small effect on stimulation. These observations suggest that numerous interactions between the oligonucleotide and eIF4A contribute individually to binding and ATPase stimulation. Nevertheless, significant stimulation is observed with as few as four RNA residues. These properties may allow eIF4A to operate within regions of 5′ UTRs containing only short stretches of exposed single-stranded RNA. As stimulation increases when longer stretches of single-stranded RNA are available, it is possible that the accessibility of single-stranded RNA in a 5′ UTR influences translation efficiency.

Type
Research Article
Information
RNA , Volume 5 , Issue 9 , September 1999 , pp. 1210 - 1221
Copyright
© 1999 RNA Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)