Donor site competition is involved in the regulation of alternative splicing of the rat β-tropomyosin pre-mRNA
Published online by Cambridge University Press: 01 February 1999
Abstract
The rat β-tropomyosin (β-TM) gene encodes both skeletal muscle β-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1–5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3′ splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5′ splice site of exon 7 in nonmuscle cells. The 5′ splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5′ splice site of exon 7 does not result from the sequences at the 3′ end of intron 6 that block the use of the 3′ splice site of exon 7. However, mutating two conserved nucleotides GU at the 5′ splice site of exon 6 results in the efficient use of the 5′ splice site of exon 7. In addition, a mutation that changes the 5′ splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5′ splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.
- Type
- Research Article
- Information
- Copyright
- 1999 RNA Society
- 5
- Cited by