No CrossRef data available.
Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization
Published online by Cambridge University Press: 11 January 2002
Abstract
Preparation of large quantities of RNA molecules of a defined sequence is a prerequisite for biophysical analysis, and is particularly important to the determination of high-resolution structure by X-ray crystallography. We describe improved methods for the production of multimilligram quantities of homogeneous tRNAs, using a combination of chemical synthesis and enzymatic approaches. Transfer RNA half-molecules with a break in the anticodon loop were chemically synthesized on a preparative scale, ligated enzymatically, and cocrystallized with an aminoacyl-tRNA synthetase, yielding crystals diffracting to 2.4 Å resolution. Multimilligram quantities of tRNAs with greatly reduced 3′ heterogeneity were also produced via transcription by T7 RNA polymerase, utilizing chemically modified DNA half-molecule templates. This latter approach eliminates the need for large-scale plasmid preparations, and yields synthetase cocrystals diffracting to 2.3 Å resolution at much lower RNA:protein stoichiometries than previously required. These two approaches developed for a tRNA–synthetase complex permit the detailed structural study of “atomic-group” mutants.
- Type
- METHOD
- Information
- Copyright
- © 2001 RNA Society