Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T11:01:03.276Z Has data issue: false hasContentIssue false

QUANTIFIED MODAL RELEVANT LOGICS

Published online by Cambridge University Press:  23 April 2021

NICHOLAS FERENZ*
Affiliation:
UNIVERSITY OF ALBERTA EDMONTON, ALBERTA, CANADA

Abstract

Here, I combine the semantics of Mares and Goldblatt [20] and Seki [29, 30] to develop a semantics for quantified modal relevant logics extending ${\bf B}$ . The combination requires demonstrating that the Mares–Goldblatt approach is apt for quantified extensions of ${\bf B}$ and other relevant logics, but no significant bridging principles are needed. The result is a single semantic approach for quantified modal relevant logics. Within this framework, I discuss the requirements a quantified modal relevant logic must satisfy to be “sufficiently classical” in its modal fragment, where frame conditions are given that work for positive fragments of logics. The roles of the Barcan formula and its converse are also investigated.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Anderson, A. R., & Belnap, N. D. (1975). Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton, NJ: Princeton University Press.Google Scholar
Bimbó, K. (2007). Relevance logics. In Jacquette, D., editor. Philosophy of Logic. Handbook of the Philosophy of Science, Vol. 5. Amsterdam: Elsevier, pp. 723789.Google Scholar
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Brady, R. (2016). Some concerns regarding ternary-relation semantics and truth-theoretic semantics in general. IFCoLog Journal of Logics and Their Applications, 4, 755781.Google Scholar
Chellas, B. (1980). Modal Logic: An Introduction. New York: Cambridge University Press.CrossRefGoogle Scholar
Dunn, J. M. (1995). Positive modal logic. Studia Logica, 55, 301317.CrossRefGoogle Scholar
Dunn, J. M., & Restall, G. (2002). Relevance logic. In Gabbay, D. M., and Guenthner, F., editors. Handbook of Philosophical Logic (second edition). Dordrecht, Netherlands: Springer, pp. 1128.Google Scholar
Fine, K. (1988). Semantics for quantified relevance logics. Journal of Philosophical Logic, 17, 2259.CrossRefGoogle Scholar
Fine, K., (1989). Incompleteness for quantified relevant logics. In Norman, J., and Sylvan, R., editors. Directions in Relevant Logic. Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 205225. Reprinted in Entailment Vol. 2, §52, Anderson, Belnap, and Dunn, 1992.CrossRefGoogle Scholar
Fuhrmann, A. (1990). Models for relevant modal logics. Studia Logica, 49, 501514.CrossRefGoogle Scholar
Goldblatt, R. (2011). Quantifiers, Propositions and Identity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goldblatt, R., & Hodkinson, I. (2009). Commutativity of quantifiers in varying-domain Kripke models. In Towards Mathematical Philosophy. Dordrecht, Netherlands: Springer, pp. 930.CrossRefGoogle Scholar
Goldblatt, R., & Kane, M. (2010). An admissible semantics for propositionally quantified relevant logics. Journal of Philosophical Logic, 39, 73100.CrossRefGoogle Scholar
Goldblatt, R., & Mares, E. (2006). A general semantics for quantified modal logic. Advances in Modal Logic, 6, 227246.Google Scholar
Halmos, P. (1962). Algebraic Logic. New York: Chelsea.Google Scholar
Logan, S. (2019). Notes on stratified semantics. Journal of Philosophical Logic, 48, 749786.CrossRefGoogle Scholar
Mares, E. (1992). The semantic completeness of RK. Reports on Mathematical Logic, 26, 310.Google Scholar
Mares, E., (1993). Classically complete modal relevant logics. Mathematical Logic Quarterly, 39, 165177.CrossRefGoogle Scholar
Mares, E., (1994). Mostly Meyer modal models. Logique et analyse, 37, 119128.Google Scholar
Mares, E., & Goldblatt, R. (2006). An alternative semantics for quantified relevant logic. The Journal of Symbolic Logic, 71, 163187.CrossRefGoogle Scholar
Mares, E., & Meyer, R. K. (1992). The admissibility of $\gamma$ in R4. Notre Dame Journal of Formal Logic, 33, 197206.CrossRefGoogle Scholar
Mares, E., & Meyer, R. K. (1993). The semantics of R4. Journal of Philosophical Logic, 22, 95110.CrossRefGoogle Scholar
Mares, E., & Tanaka, K. (2010). Boolean conservative extension results for some modal relevant logics. Australasian Journal of Logic, 8, 3149.CrossRefGoogle Scholar
Restall, G. (2002). An Introduction to Substructural Logics. New York: Routlege.CrossRefGoogle Scholar
Routley, R., & Meyer, R. (1972). The semantics of entailment—II. The Journal of Philosophical Logic, 1, 5373.CrossRefGoogle Scholar
Routley, R., & Meyer, R. (1973). The semantics of entailment. In Leblanc, H., editor. Truth, Syntax, and Modality. Amsterdam: North-Holland, pp. 199243.CrossRefGoogle Scholar
Routley, R., Plumwood, V., Meyer, R. K., & Brady, R. T. (1982). Relevant Logics and Their Rivals: Part 1. The Basic Philosophical and Semantical Theory. Atascadero, CA: Ridgewood.Google Scholar
Segerberg, K. (1971). An Essay in Classical Modal Logic. Uppsala: University of Uppsala.Google Scholar
Seki, T. (2003a). General frames for relevant modal logics. Notre Dame Journal of Formal Logic, 44, 93109.CrossRefGoogle Scholar
Seki, T., (2003b). A Sahlqvist theorem for relevant modal logics. Studia Logica, 73, 383411.CrossRefGoogle Scholar
Thomason, S. K. (1972). Semantic analysis of tense logic. The Journal of Symbolic Logic, 37, 150158.CrossRefGoogle Scholar