Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T00:59:01.378Z Has data issue: false hasContentIssue false

PRESERVATION OF ADMISSIBLE RULES WHEN COMBINING LOGICS

Published online by Cambridge University Press:  17 August 2016

JOÃO RASGA*
Affiliation:
Departamento de Matemática, Universidade de Lisboa
CRISTINA SERNADAS*
Affiliation:
Departamento de Matemática, Universidade de Lisboa
AMÍLCAR SERNADAS*
Affiliation:
Departamento de Matemática, Universidade de Lisboa
*
*DEPARTAMENTO DE MATEMÁTICA INSTITUTO SUPERIOR TÉCNICO AV. ROVISCO PAIS 1, 1049-001 LISBOA, PORTUGAL E-mail: [email protected]
DEPARTAMENTO DE MATEMÁTICA INSTITUTO SUPERIOR TÉCNICO AV. ROVISCO PAIS 1, 1049-001 LISBOA, PORTUGAL E-mail: [email protected]
DEPARTAMENTO DE MATEMÁTICA INSTITUTO SUPERIOR TÉCNICO AV. ROVISCO PAIS 1, 1049-001 LISBOA, PORTUGAL E-mail: [email protected]

Abstract

Admissible rules are shown to be conservatively preserved by the meet-combination of a wide class of logics. A basis is obtained for the resulting logic from bases given for the component logics, under mild conditions. A weak form of structural completeness is proved to be preserved by the combination. Decidability of the set of admissible rules is also shown to be preserved, with no penalty on the time complexity. Examples are provided for the meet-combination of intermediate and modal logics.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Babënyshev, S. V. (1992). Decidability of the problem of the admissibility of inference rules in the modal logics S4.2 and S4.2Grz and the super-intuitionistic logic KC. Algebra and Logic, 31(4), 341359, 449 (in Russian).CrossRefGoogle Scholar
Belnap, N. D. Jr. & Thomason, R. H. (1963). A rule-completeness theorem. Notre Dame Journal of Formal Logic, 4, 3943.CrossRefGoogle Scholar
Carnielli, W. A., Rasga, J., & Sernadas, C. (2008). Preservation of interpolation features by fibring. Journal of Logic and Computation, 18(1), 123151.CrossRefGoogle Scholar
Chagrov, A. V. (1992). A decidable modal logic for which the admissibility of inference rules is an undecidable problem. Algebra and Logic, 31(1), 8393, 97 (in Russian).CrossRefGoogle Scholar
Cintula, P. & Metcalfe, G. (2010). Admissible rules in the implication-negation fragment of intuitionistic logic. Annals of Pure and Applied Logic, 162(2), 162171.CrossRefGoogle Scholar
Czelakowski, J. (2003). Equivalential logics (after 25 years of investigations). Reports on Mathematical Logic, 38, 2336.Google Scholar
Dzik, W. & Wojtylak, P. (2012). Projective unification in modal logic. Logic Journal of the IGPL, 20(1), 121153.CrossRefGoogle Scholar
Dzik, W. & Wroński, A. (1973). Structural completeness of Gödel’s and Dummett’s propositional calculi. Studia Logica, 32, 6975.CrossRefGoogle Scholar
Friedman, H. (1975). One hundred and two problems in mathematical logic. The Journal of Symbolic Logic, 40, 113129.CrossRefGoogle Scholar
Gabbay, D. M. (1996). Fibred semantics and the weaving of logics. I. Modal and intuitionistic logics. The Journal of Symbolic Logic, 61(4), 10571120.CrossRefGoogle Scholar
Gabbay, D. M. (1999). Fibring Logics. Oxford Logic Guides, Vol. 38. Oxford: The Clarendon Press, Oxford University Press.Google Scholar
Gabbay, D. M. & de Jongh, D. H. J. (1974). A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. The Journal of Symbolic Logic, 39, 6778.CrossRefGoogle Scholar
Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics, Vol. 148. Amsterdam: North-Holland.Google Scholar
Ghilardi, S. (1999). Unification in intuitionistic logic. The Journal of Symbolic Logic, 64(2), 859880.CrossRefGoogle Scholar
Ghilardi, S. (2000). Best solving modal equations. Annals of Pure and Applied Logic, 102(3), 183198.CrossRefGoogle Scholar
Goudsmit, J. P. & Iemhoff, R. (2014). On unification and admissible rules in Gabbay–de Jongh logics. Annals of Pure and Applied Logic, 165(2), 652672.CrossRefGoogle Scholar
Harrop, R. (1960). Concerning formulas of the types ABC, A → (Ex) B (x) in intuitionistic formal systems. The Journal of Symbolic Logic, 25, 2732.CrossRefGoogle Scholar
Iemhoff, R. (2001). On the admissible rules of intuitionistic propositional logic. The Journal of Symbolic Logic, 66(1), 281294.CrossRefGoogle Scholar
Iemhoff, R. (2005). Intermediate logics and Visser’s rules. Notre Dame Journal of Formal Logic, 46(1), 6581 (electronic).CrossRefGoogle Scholar
Iemhoff, R. (2015). On rules. Journal of Philosophical Logic, 44(6), 697711.CrossRefGoogle Scholar
Iemhoff, R. (2016). Consequence relations and admissible rules. Journal of Philosophical Logic, 45(3), 327348.CrossRefGoogle Scholar
Iemhoff, R. & Metcalfe, G. (2009). Proof theory for admissible rules. Annals of Pure and Applied Logic, 159(1–2), 171186.CrossRefGoogle Scholar
Jeřábek, E. (2005). Admissible rules of modal logics. Journal of Logic and Computation, 15(4), 411431.CrossRefGoogle Scholar
Jeřábek, E. (2007). Complexity of admissible rules. Archive for Mathematical Logic, 46(2), 7392.CrossRefGoogle Scholar
Jeřábek, E. (2010). Bases of admissible rules of Lukasiewicz logic. Journal of Logic and Computation, 20(6), 11491163.CrossRefGoogle Scholar
Jeřábek, E. (2013). The complexity of admissible rules of Lukasiewicz logic. Journal of Logic and Computation, 23(3), 693705.CrossRefGoogle Scholar
Kracht, M. & Wolter, F. (1991). Properties of independently axiomatizable bimodal logics. The Journal of Symbolic Logic, 56(4), 14691485.CrossRefGoogle Scholar
Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXVIII. Berlin-Göttingen-Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Metcalfe, G. (2012). Admissible rules: From characterizations to applications. In Ong, L., and de Queiroz, R., editors. Logic, Language, Information and Computation. LNCS, Vol. 7456, Heidelberg: Springer, pp. 5669.CrossRefGoogle Scholar
Odintsov, S. & Rybakov, V. (2013). Unification and admissible rules for paraconsistent minimal Johanssons’ logic J and positive intuitionistic logic IPC +. Annals of Pure and Applied Logic, 164(7–8), 771784.CrossRefGoogle Scholar
Olson, J. S., Raftery, J. G., & van Alten, C. J. (2008). Structural completeness in substructural logics. Logic Journal of the IGPL, 16(5), 455495.CrossRefGoogle Scholar
Prucnal, T. (1973). Proof of structural completeness of a certain class of implicative propositional calculi. Studia Logica, 32, 9397.CrossRefGoogle Scholar
Rybakov, V. V. (1984). A criterion for admissibility of rules in the modal system S4 and intuitionistic logic. Algebra and Logic, 23(5), 546572, 600 (in Russian).CrossRefGoogle Scholar
Rybakov, V. V. (1997). Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, Vol. 136. Amsterdam: North-Holland.CrossRefGoogle Scholar
Sernadas, C., Rasga, J., & Carnielli, W. A. (2002). Modulated fibring and the collapsing problem. Journal of Symbolic Logic, 67(4), 15411569.CrossRefGoogle Scholar
Sernadas, C., Rasga, J., & Sernadas, A. (2013). Preservation of Craig interpolation by the product of matrix logics. Journal of Applied Logic, 11(3), 328349.CrossRefGoogle Scholar
Sernadas, A., Sernadas, C., & Caleiro, C. (1999). Fibring of logics as a categorial construction. Journal of Logic and Computation, 9(2), 149179.CrossRefGoogle Scholar
Sernadas, A., Sernadas, C., & Rasga, J. (2012). On meet-combination of logics. Journal of Logic and Computation, 22(6), 14531470.CrossRefGoogle Scholar
Thomason, R. H. (1984). Combinations of tense and modality. In Gabbay, D., and Guenthner, F., editors. Handbook of Philosophical Logic, Vol. II. Synthese Library, Vol. 165. Dordrech: Reidel, pp. 135165.CrossRefGoogle Scholar
Wolter, F. & Zakharyaschev, M. (2008). Undecidability of the unification and admissibility problems for modal and description logics. ACM Transactions on Computational Logic, 9(4), Article no. 25, 20.CrossRefGoogle Scholar
Zanardo, A., Sernadas, A., & Sernadas, C. (2001). Fibring: Completeness preservation. Journal of Symbolic Logic, 66(1), 414439.CrossRefGoogle Scholar