Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T19:05:31.590Z Has data issue: false hasContentIssue false

GROUPS OF WORLDVIEW TRANSFORMATIONS IMPLIED BY EINSTEIN’S SPECIAL PRINCIPLE OF RELATIVITY OVER ARBITRARY ORDERED FIELDS

Published online by Cambridge University Press:  23 March 2021

JUDIT X. MADARÁSZ
Affiliation:
DEPARTMENT OF SET THEORY, LOGIC AND TOPOLOGY ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS P.O. BOX 127, BUDAPEST 1364, HUNGARYE-mail: [email protected]: http://www.renyi.hu/~madarasz
MIKE STANNETT
Affiliation:
DEPARTMENT OF COMPUTER SCIENCE THE UNIVERSITY OF SHEFFIELD PORTOBELLO, SHEFFIELD S1 4DP, UKE-mail: [email protected]: https://www.sheffield.ac.uk/dcs/people/academic/mike-stannett
GERGELY SZÉKELY
Affiliation:
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS P.O. BOX 127, BUDAPEST 1364, HUNGARY and DEPARTMENT OF NATURAL SCIENCE UNIVERSITY OF PUBLIC SERVICE P.O. BOX 60, BUDAPEST 1441, HUNGARYE-mail: [email protected]: https://users.renyi.hu/~turms

Abstract

In 1978, Yu. F. Borisov presented an axiom system using a few basic assumptions and four explicit axioms, the fourth being a formulation of the relativity principle, and he demonstrated that this axiom system had (up to choice of units) only two models: a relativistic one in which worldview transformations are Poincaré transformations and a classical one in which they are Galilean. In this paper, we reformulate Borisov’s original four axioms within an intuitively simple, but strictly formal, first-order logic framework, and convert his basic background assumptions into explicit axioms. Instead of assuming that the structure of physical quantities is the field of real numbers, we assume only that they form an ordered field. This allows us to investigate how Borisov’s theorem depends on the structure of quantities.

We demonstrate (as our main contribution) how to construct Euclidean, Galilean, and Poincaré models of Borisov’s axiom system over every non-Archimedean field. We also demonstrate the existence of an infinite descending chain of models and transformation groups in each of these three cases, something that is not possible over Archimedean fields.

As an application, we note that there is a model of Borisov’s axioms that satisfies the relativity principle, and in which the worldview transformations are Euclidean isometries. Over the field of reals it is easy to eliminate this model using natural axioms concerning time’s arrow and the absence of instantaneous motion. In the case of non-Archimedean fields, however, the Euclidean isometries appear intrinsically as worldview transformations in models of Borisov’s axioms, and neither the assumption of time’s arrow, nor the rejection of instantaneous motion, can eliminate them.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Albeverio, S. (1987). An introduction to non standard analysis and applications to quantum theory. In Blaquiere, A., Diner, S., and Lochak, G., editors. Information Complexity and Control in Quantum Physics. Vienna: Springer Vienna, pp. 183208.CrossRefGoogle Scholar
Albeverio, S., Fenstad, J. E., & Hoegh-Krohn, R. (1986). Nonstandard Methods in Stochastic Analysis and Mathemetical Physics. Pure and Applied Mathematics, Vol. 122. Orlando: Academic Press.Google Scholar
Andréka, H., Madarász, J. X., & Németi, I. (2002). On the Logical Structure of Relativity Theories. Research Report, Appendix, with contributions from Andai, A., Sági, G., Sain, I., and Tőke, C. Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest.Google Scholar
Andréka, H., Madarász, J. X., & Németi, I. (2006). Logical axiomatizations of space-time. Samples from the literature. In Prékopa, A. and Molnár, E., editors. Non-Euclidean Geometries: János Bolyai Memorial Volume. Springer Verlag, pp. 155185.CrossRefGoogle Scholar
Andréka, H. & Németi, I. (2014). Comparing theories: The dynamics of changing vocabulary. In Baltag, A. and Smets, S., editors. Johan van Benthem on Logic and Information Dynamics. Cham: Springer Verlag, pp. 143172.CrossRefGoogle Scholar
Bagarello, F. & Valenti, S. (1988). Nonstandard analysis in classical physics and quantum formal scattering. International Journal of Theoretical Physics, 27, 557566.CrossRefGoogle Scholar
Borisov, Y. F. (1978). Axiomatic definition of the Galilean and Lorentz groups. Siberian Mathematical Journal, 19(6), 870882.CrossRefGoogle Scholar
Capinski, M. & Cutland, N. J. (1995). Nonstandard Methods for Stochastic Fluid Mechanics. Singapore: World Scientific Publishers.CrossRefGoogle Scholar
Dávid, G. (1990). Special relativity based on group theory. Talk at Summer School on Special Relativity, Galyatető, Hungary, 1990.Google Scholar
Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891921.CrossRefGoogle Scholar
Frank, P. & Rothe, H. (1911). Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme. Annalen der Physik, 339(5), 825855. English translation (transl. Morris D. Friedman, Inc.): https://archive.org/details/nasa_techdoc_19880069066.CrossRefGoogle Scholar
Friend, M. (2015). On the epistemological significance of the Hungarian project. Synthese, 192, 7, 20352051.CrossRefGoogle Scholar
Friend, M. & Molinini, D. (2015). Using mathematics to explain a scientific theory. Philosophia Mathematica, 24(2), 185213.CrossRefGoogle Scholar
Gömöri, M. (2015). The Principle of Relativity—An Empiricist Analysis. Ph.D. Thesis, Eötvös University, Budapest.Google Scholar
Gömöri, M. & Szabó, L. E. (2015). Formal statement of the special principle of relativity. Synthese, 192(7), 20532076.CrossRefGoogle Scholar
Govindarajalulu, N. S., Bringsjord, S., & Taylor, J. (2015). Proof verification and proof discovery for relativity. Synthese, 192(7), 20772094.CrossRefGoogle Scholar
Guts, A. K. (1982). The axiomatic theory of relativity. Russian Mathematical Surveys, 37(2), 4189.CrossRefGoogle Scholar
Madarász, J. X. & Székely, G. (2013). Special relativity over the field of rational numbers. International Journal of Theoretical Physics, 52(5), 17061718.CrossRefGoogle Scholar
Madarász, J. X., Székely, G., & Stannett, M. (2017). Three different formalisations of Einstein’s relativity principle. The Review of Symbolic Logic, 10(3), 530548.CrossRefGoogle Scholar
Madarász, J. X., Stannett, M., & Székely, G. (2020). Groups of worldview transformations implied by isotropy of space. Journal of Applied Logics, 8(3), 809876.Google Scholar
Nelson, E. (1987). Radically Elementary Probability Theory. Princeton: Princeton University Press. Available online: http://www.web.math.princeton.edu/~nelson/books/rept.pdf.CrossRefGoogle Scholar
Odom, B., Hanneke, D., D’Urso, B., & Gabrielse, G. (2006). New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Physical Review Letters, 97, 030801.CrossRefGoogle ScholarPubMed
Perlis, D. (2016). Taking physical infinity seriously. In Omodeo, E. G. & Policriti, A., editors. Martin Davis on Computability, Computational Logic, and Mathematical Foundations. Cham: Springer International Publishing, pp. 243254.CrossRefGoogle Scholar
Stannett, M. & Németi, I. (2014). Using Isabelle/HOL to verify first-order relativity theory. Journal of Automated Reasoning, 52(4), 361378.CrossRefGoogle Scholar
Székely, G. (2009). First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers. Ph.D. Thesis, Eötvös Loránd University, Budapest.Google Scholar
von Ignatowsky, W. (1910a). Das Relativitätsprinzip. Archiv der Mathematik und Physik, 17, 124.Google Scholar
von Ignatowsky, W. (1910b). Einige allgemeine Bemerkungen über das Relativitätsprinzip. Physikalische Zeitschrift, 11, 972976. English Wikisource translation: https://en.wikisource.org/wiki/Translation:Some_General_Remarks_on_the_Relativity_Principle.Google Scholar
von Ignatowsky, W. (1911). Das Relativitätsprinzip. Archiv der Mathematik und Physik, 18, 1740.Google Scholar