Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T04:31:32.262Z Has data issue: false hasContentIssue false

EPISTEMIC ENTRENCHMENT-BASED MULTIPLE CONTRACTIONS

Published online by Cambridge University Press:  13 May 2013

EDUARDO FERMÉ*
Affiliation:
Centro de Ciências Exactas e da Engenharia,Universidade da Madeira and Centre for Artificial Intelligence (CENTRIA), Universidade Nova de Lisboa
MAURÍCIO D. L. REIS*
Affiliation:
Centro de Ciências Exactas e da Engenharia,Universidade da Madeira and Centre for Artificial Intelligence (CENTRIA), Universidade Nova de Lisboa
*
*CENTRO DE CIÊNCIAS EXACTAS E DA ENGENHARIA UNIVERSIDADE DA MADEIRA CAMPUS UNIVERSITÁRIO DA PENTEADA, 9020-105 FUNCHAL, PORTUGAL E-mail: [email protected]E-mail: [email protected]
*CENTRO DE CIÊNCIAS EXACTAS E DA ENGENHARIA UNIVERSIDADE DA MADEIRA CAMPUS UNIVERSITÁRIO DA PENTEADA, 9020-105 FUNCHAL, PORTUGAL E-mail: [email protected]E-mail: [email protected]

Abstract

In this article we present a new class of multiple contraction functions—the epistemic entrenchment-based multiple contractions—which are a generalization of the epistemic entrenchment-based contractions (Gärdenfors, 1988; Gärdenfors & Makinson, 1988) to the case of contractions by (possibly nonsingleton) sets of sentences and provide an axiomatic characterization for that class of functions. Moreover, we show that the class of epistemic entrenchment-based multiple contractions coincides with the class of system of spheres-based multiple contractions introduced in Fermé & Reis (2012).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510530.Google Scholar
Alchourrón, C., & Makinson, D. (1981). Hierarchies of regulations and their logic. In Hilpinen, R., editor. New Studies in Deontic Logic: Norms, Actions, and the Foundations of Ethics. Dordrecht, Holland: D. Reidel Publishing Company, pp. 125148.Google Scholar
Alchourrón, C., & Makinson, D. (1985). On the logic of theory change: Safe contraction. Studia Logica, 44, 405422.Google Scholar
Fermé, E., & Reis, M. (2012). System of spheres-based multiple contractions. Journal of Philosophical Logic, 41, 2952.Google Scholar
Fermé, E., Saez, K., & Sanz, P. (2003). Multiple kernel contraction. Studia Logica, 73, 183195.Google Scholar
Foo, N. Y. (1990). Observations on AGM entrenchment. Technical report 389, University of Sydney, Basser Department of Computer Science.Google Scholar
Fuhrmann, A. (1991). Theory contraction through base contraction. Journal of Philosophical Logic, 20, 175203.CrossRefGoogle Scholar
Fuhrmann, A., & Hansson, S. O. (1994). A survey of multiple contraction. Journal of Logic, Language and Information, 3, 3974.CrossRefGoogle Scholar
Gärdenfors, P. (1988). Knowledge in Flux: Modeling the Dynamics of Epistemic States. Cambridge: The MIT Press.Google Scholar
Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. In Vardi, M. Y., editor. Proceedings of the Second Conference on Theoretical Aspects of Reasoning About Knowledge. Los Altos, CA: Morgan Kaufmann, pp. 8395.Google Scholar
Gärdenfors, P., & Rott, H. (1995). Belief revision. In Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editors. Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 4, Epistemic and Temporal Reasoning. Oxford, UK: Oxford University Press, pp. 35132.Google Scholar
Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157170.Google Scholar
Hansson, S. O. (1989). New operators for theory change. Theoria, 55, 114132.Google Scholar
Hansson, S. O. (1991). Belief Base Dynamics. PhD thesis, Uppsala University.Google Scholar
Hansson, S. O. (1992). A dyadic representation of belief. In Gärdenfors, P., editor. Belief Revision, Number 29 in Cambridge Tracts in Theoretical Computer Science. Cambridge, UK: Cambridge University Press, pp. 89121.Google Scholar
Hansson, S. O. (1994). Kernel contraction. Journal of Symbolic Logic, 59, 845859.Google Scholar
Hansson, S. O. (1999). A Textbook of Belief Dynamics. Theory Change and Database Updating, Volume 11 of Applied Logic Series. Dordrecht: Kluwer Academic Publishers.Google Scholar
Hansson, S. O. (2010). Multiple and iterated contraction reduced to single-step single-sentence contraction. Synthese, 173, 153177.Google Scholar
Niederée, R. (1991). Multiple contraction: A further case against Gärdenfors’ principle of recovery. In Fuhrmann, A., and Morreau, M., editors. The Logic of Theory Change. Berlin: Springer-Verlag, pp. 322334.Google Scholar
Peppas, P., & Williams, M.-A. (1995, Winter). Constructive modelings for theory change. Notre Dame Journal of Formal Logic, 36(1), 120133.CrossRefGoogle Scholar
Reis, M., & Fermé, E. (2012). Possible worlds semantics for partial meet multiple contraction. Journal of Philosophical Logic, 41, 728.CrossRefGoogle Scholar
Reis, M. D. L. (2011, May). On Theory Multiple Contraction. PhD thesis, Universidade da Madeira. http://hdl.handle.net/10400.13/255.Google Scholar
Spohn, W. (2010). Multiple contraction revisited. In Suárez, M., Dorato, M., and Rédei, M., editors. EPSA Epistemology and Methodology of Science. The Netherlands: Springer, pp. 279288.Google Scholar