Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T05:52:06.499Z Has data issue: false hasContentIssue false

EDWARD NELSON (1932–2014)

Published online by Cambridge University Press:  05 February 2015

MIKHAIL G. KATZ*
Affiliation:
Department of Mathematics, Bar Ilan University
SEMEN S. KUTATELADZE*
Affiliation:
Novosibirsk State University
*
*DEPARTMENT OF MATHEMATICS BAR ILAN UNIVERSITY RAMAT GAN 52900 ISRAEL E-mail:[email protected]
SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK STATE UNIVERSITY RUSSIA E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D., & Shnider, S. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886904. Available from: http://www.ams.org/notices/201307/rnoti-p886.pdf and http://arxiv.org/abs/1306.5973.Google Scholar
Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., & Sherry, D. (2015). Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS: The Journal of the International Society for the History of Philosophy of Science. To appear.Google Scholar
Faris, W. (2006). Diffusion, quantum theory, and radically elementary mathematics. In Faris, W. G., editor. Mathematical Notes, Vol. 47. Princeton, NJ: Princeton University Press.Google Scholar
Gordon, E., Kusraev, A., & Kutateladze, S. (2002). Infinitesimal Analysis. Mathematics and its Applications, Vol. 544. Updated and revised translation of the 2001 Russian original. Translated by Kutateladze, . Dordrecht: Kluwer Academic Publishers.Google Scholar
Hrbáček, K. (1978). Axiomatic foundations for nonstandard analysis. Fundamenta Mathematicae, 98(1), 119.Google Scholar
Kanovei, V., & Reeken, M. (2004). Nonstandard Analysis, Axiomatically. Springer Monographs in Mathematics. Berlin: Springer.Google Scholar
Lawler, G. (2011). Comments on Edward Nelson’sInternal set theory: A new approach to nonstandard analysis”. Bulletin of the American Mathematical Society (N.S.), 48(4), 503506.CrossRefGoogle Scholar
Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 11651198.Google Scholar
Nelson, E. (1987). Radically Elementary Probability Theory. Issue 117 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Nelson, E. (1988). The syntax of nonstandard analysis. Annals of Pure and Applied Logic, 38(2), 123134.Google Scholar
Nelson, E. (1995). Private communication. January 16, 1995.Google Scholar
Robinson, A. (1966). Non-standard Analysis. Amsterdam: North-Holland Publishing.Google Scholar