No CrossRef data available.
Article contents
DE MORGAN INTERPRETATION OF THE LAMBEK–GRISHIN CALCULUS
Published online by Cambridge University Press: 26 February 2019
Abstract
We present an embedding of the Lambek–Grishin calculus into an extension of the nonassociative Lambek calculus with negation. The embedding is based on the De Morgan interpretation of the dual Grishin connectives.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2019
References
BIBLIOGRAPHY
Buszkowski, W. (1996). Categorial grammars with negative information. In Wansing, H., editor. Negation. A Notion in Focus. Berlin: de Gruyter, pp. 107–126.Google Scholar
Buszkowski, W. (2005). Lambek calculus with nonlogical axioms. In Casadio, C., Scott, P., and Seely, R., editors. Language and Grammar: Studies in Mathematical Linguistics and Natural Language. CSLI Lectures Notes, Vol. 168. Stanford, CA: Center for the Study of Language and Information, pp. 77–93.Google Scholar
Buszkowski, W. (2011). Interpolation and FEP for logics of residuated algebras. Logic Journal of the IGPL, 19, 437–454.CrossRefGoogle Scholar
de Groote, P. (2015). Proof-theoretic aspects of the Lambek–Grishin calculus. In de Paiva, V., de Queiroz, R. J. G. B., Moss, L. S., Leivant, D., and de Oliveira, A. G., editors. Logic, Language, Information, and Computation - 22nd International Workshop, WoLLIC 2015. Lecture Notes in Computer Science, Vol. 9160. Heidelberg: Springer, pp. 109–123.Google Scholar
de Groote, P. & Lamarche, F. (2002). Classical nonassociative Lambek calculus. Studia Logica, 71, 355–388.CrossRefGoogle Scholar
Grishin, V. N. (1983). On a generalization of the Ajdukiewicz-Lambek system. In Mikhailov, A. I., editor. Studies in Nonclassical Logics and Formal Systems. Moscow: Nauka, pp. 315–334. (English translation in: Abrusci, V. M. & Casadio, C., editors. New Perspectives in Logic and Formal Linguistics. Proceedings of the Vth Roma Workshop, Bulzoni, Rome, 2002.)Google Scholar
Kaminski, M. & Francez, N. (2016). The Lambek calculus extended with intuitionistic propositional logic. Studia Logica, 104, 1051–1082.CrossRefGoogle Scholar
Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170. (Also in Categorial Grammars, Buszkowski, W., Marciszewski, W., and van Benthem, J., editors. John Benjamins, Amsterdam, 1988.)Google Scholar
Troelstra, A. S. & Schwichtenberg, H. (2000). Basic Proof Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar