Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T08:19:24.625Z Has data issue: false hasContentIssue false

CALCULIZING CLASSICAL INFERENTIAL EROTETIC LOGIC

Published online by Cambridge University Press:  29 June 2020

MORITZ CORDES*
Affiliation:
DEPARTMENT OF PHILOSOPHY UNIVERSITY OF GREIFSWALDGREIFSWALD, GERMANY E-mail: [email protected]

Abstract

This paper contributes to the calculization of evocation and erotetic implication as defined by Inferential Erotetic Logic (IEL). There is a straightforward approach to calculizing (propositional) erotetic implication which cannot be applied to evocation. First-order evocation is proven to be uncalculizable, i.e. there is no proof system, say FOE, such that for all $X, Q$ : X evokes Q iff there is an FOE-proof for the evocation of Q by X. These results suggest a critique of the represented approaches to calculizing IEL. This critique is expanded into a programmatic reconsideration of the IEL-definitions of evocation and erotetic implication. From a different point of view these definitions should be seen as desiderata that may or may not play the role of a point of orientation when setting up “rules of asking.”

Type
Research Article
Copyright
© Association for Symbolic Logic, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Angelelli, I. (1970). The techniques of disputation in the history of logic. The Journal of Philosophy, 67(20), 800815.CrossRefGoogle Scholar
Bell, J. L. (2016). Infinitary logic. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy. Stanford, CA: Metaphysics Research Lab, Stanford University. Available from: https://plato.stanford.edu/archives/win2016/logic-infinitary/.Google Scholar
Belnap, N. D., & Steel, T. B. (1976). The Logic of Questions and Answers. New Haven, CT: Yale University Press.Google Scholar
Carnap, R. (1950). Logical Foundations of Probability. Chicago, IL: University of Chicago Press.Google Scholar
Church, A. (1936). A note on the Entscheidungsproblem. The Journal of Symbolic Logic, 1(1), 4041.CrossRefGoogle Scholar
Ciardelli, I., Roelofsen, F., & Groenendijk, J. (2019). Inquisitive Semantics. Oxford: Oxford University Press.Google Scholar
Cordes, M. & Siegwart, G. (2018). Explication. In Fieser, J. & Dowden, B., editors. Internet Encyclopedia of Philosophy. Available from: https://iep.utm.edu/home/about/.Google Scholar
Diestel, R. (2006). Graph Theory. Berlin, Germany: Springer.Google Scholar
Gentzen, G. (1935). Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(2), 176210.CrossRefGoogle Scholar
Harrah, D. (2002). The logic of questions. In Gabbay, D. M. & Guenthner, F., editors. Handbook of Philosophical Logic, Vol. 8, second edition. New York: Springer, pp. 160.Google Scholar
Hintikka, J. (1999). Inquiry as Inquiry: A Logic of Scientific Discovery. Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
Kneale, W. & Kneale, M. (1962). The Development of Logic. Oxford: Clarendon Press.Google Scholar
Kubiński, T. (1980). An Outline of the Logical Theory of Questions. Berlin, Germany: Akademie-Verlag.Google Scholar
Lambert, J. H. (1764). Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrthum und Schein. Leipzig, Germany: Johann Wendler.Google Scholar
Leszczyńska-Jasion, D. (2018). From Questions to Proofs: Between the Logic of Questions and Proof Theory. Poznań, Poland: Faculty of Social Science Publishers Adam Mickiewicz University in Poznań.Google Scholar
Łupkowski, P. (2015). Logic of Questions in the Wild. Inferential Erotetic Logic in Information Seeking Dialogue Modelling. Milton Keynes: College Publications.Google Scholar
Mares, E. (2014). Relevance logic. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy. 2014 edition. Stanford, CA: Metaphysics Research Lab, Stanford University, Springer. Available from: https://plato.stanford.edu/archives/spr2014/entries/logic-relevance/.Google Scholar
Meheus, J. (2001). Adaptive logics for question evocation. Logique & Analyse, 173–175, 135164.Google Scholar
Millson, J. (2019). A cut-free sequent calculus for defeasible erotetic inferences. Studia Logica, 107, 12791312.CrossRefGoogle Scholar
Negri, S. & von Plato, J. (2001). Structural Proof Theory. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Reinmuth, F. & Siegwart, G. (2016). Inferential acts and inferential rules: the intrinsic normativity of logic. Analyse und Kritik, 38(2), 417431.CrossRefGoogle Scholar
Shoesmith, D. J. & Smiley, T. J. (1978). Multiple-conclusion Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Skura, T. & Wiśniewski, A. (2015). A system for proper multiple-conclusion entailment. Logic and Logical Philosophy, 24, 241253.Google Scholar
Wiśniewski, A. (1995). The Posing of Questions. Logical Foundations of Erotetic Inferences. Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
Wiśniewski, A. (2013). Questions, Inferences, and Scenarios. Milton Keynes: College Publications.Google Scholar
Wiśniewski, A. (2016). An axiomatic account of question evocation: the propositional case. Axioms, 5(2), 114. https://doi.org/10.3390/axioms5020014.CrossRefGoogle Scholar
Wiśniewski, A. (2018). Deduction and reduction theorems for inferential erotetic logic. Studia Logica, 106(2), 295309.CrossRefGoogle Scholar