Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T05:41:45.914Z Has data issue: false hasContentIssue false

AN ABSTRACT APPROACH TO CONSEQUENCE RELATIONS

Published online by Cambridge University Press:  15 February 2019

PETR CINTULA*
Affiliation:
Institute of Computer Science of the Czech Academy of Sciences
JOSÉ GIL-FÉREZ*
Affiliation:
University of Bern
TOMMASO MORASCHINI*
Affiliation:
Institute of Computer Science of the Czech Academy of Sciences
FRANCESCO PAOLI*
Affiliation:
University of Cagliari
*
*INSTITUTE OF COMPUTER SCIENCE OF THE CZECH ACADEMY OF SCIENCES POD VODÁRENSKOU VĚŽÍ 271/2 182 07 PRAGUE 8, CZECH REPUBLIC E-mail: [email protected]E-mail: [email protected]
MATHEMATHICAL INSTITUTE UNIVERSITY OF BERN SIDLERSTRASSE 5 3012 BERN, SWITZERLAND E-mail: [email protected]
*INSTITUTE OF COMPUTER SCIENCE OF THE CZECH ACADEMY OF SCIENCES POD VODÁRENSKOU VĚŽÍ 271/2 182 07 PRAGUE 8, CZECH REPUBLIC E-mail: [email protected]E-mail: [email protected]
DEPARTMENT OF PEDAGOGY, PSYCHOLOGY, PHILOSOPHY UNIVERSITY OF CAGLIARI VIA IS MIRRIONIS, 1 09123 CAGLIARI, ITALY E-mail: [email protected]

Abstract

We generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that nonidempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Anderson, A. R. & Belnap, N. D. Jr. (1975). Entailment, Vol. I. Princeton, N. J.-London: Princeton University Press.Google Scholar
Avron, A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57 (2–3), 161184.CrossRefGoogle Scholar
Avron, A. (1991). Simple consequence relations. Information and Computation, 92 (1), 105139.CrossRefGoogle Scholar
Avron, A. (1992). Axiomatic systems, deduction and implication. Journal of Logic and Computation, 2(1), 5198.CrossRefGoogle Scholar
Avron, A. (1994). What is a logical system? In Gabbay, D., editor. What is a logical system? Studies in Logic and Computation, Vol. 4. New York: Oxford University Press, pp. 217238.Google Scholar
Blizard, W. D. (1989). Multiset theory. Notre Dame Journal of Formal Logic, 30(1), 3666.CrossRefGoogle Scholar
Blok, W. J. & Jónsson, B. (1999). Algebraic structures for logic. A course given at the 23rd Holiday Mathematics Symposium, New Mexico State University, 1999.Google Scholar
Blok, W. J. & Jónsson, B. (2006). Equivalence of consequence operations. Studia Logica, 83(1–3), 91110. With a preface by Jónsson.CrossRefGoogle Scholar
Blok, W. J. & Pigozzi, D. (1986). Protoalgebraic logics. Studia Logica, 45(4), 337369.CrossRefGoogle Scholar
Blok, W. J. & Pigozzi, D. L. (1989). Algebraizable logics. Memoirs of the American Mathematical Society, 77(396), vi+78.CrossRefGoogle Scholar
Blok, W. J. & Pigozzi, D. L. (1991). Local deduction theorems in algebraic logic. In Andréka, H., Monk, J. D., and Németi, I, editors. Algebraic Logic (Budapest, 1988). Colloquia mathematica Societatis János Bolyai, Vol. 54. Amsterdam: North-Holland, pp. 75109.Google Scholar
Cignoli, R. L. O., D’Ottaviano, I. M. L., & Mundici, D. (2000). Algebraic Foundations of Many-Valued Reasoning. Trends in Logic—Studia Logica Library, Vol. 7. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Cintula, P. & Paoli, F. (2016). Is multiset consequence trivial? Synthese, doi: 10.1007/s11229-016-1209-7.CrossRefGoogle Scholar
Czelakowski, J. (2001). Protoalgebraic Logics. Trends in Logic—Studia Logica Library, Vol. 10. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Font, J. M. (2016). Abstract Algebraic Logic. An Introductory Textbook. Studies in Logic, Mathematical Logic and Foundations, Vol. 60. London: College Publications.Google Scholar
Font, J. M. & Jansana, R. (1996). A General Algebraic Semantics for Sentential Logics. Lecture Notes in Logic, Vol. 7. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Font, J. M., Jansana, R., & Pigozzi, D. (2003). A survey of abstract algebraic logic. Studia Logica, 74(1–2), 1397. Abstract algebraic logic, Part II (Barcelona, 1997).CrossRefGoogle Scholar
Font, J. M. & Moraschini, T. (2015). M-sets and the representation problem. Studia Logica, 103(1), 2151.CrossRefGoogle Scholar
Galatos, N. & Gil-Férez, J. (2017). Modules over quantaloids: Applications to the isomorphism problem in algebraic logic and π-institutions. Journal of Pure and Applied Algebra, 221(1), 124.CrossRefGoogle Scholar
Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, Vol. 151. Amsterdam: Elsevier B. V.Google Scholar
Galatos, N. & Tsinakis, C. (2009). Equivalence of consequence relations: An order-theoretic and categorical perspective. Journal of Symbolic Logic, 74(3), 780810.CrossRefGoogle Scholar
Gil-Férez, J. (2011). Representations of structural closure operators. Archive for Mathematical Logic, 50(1–2), 4573.CrossRefGoogle Scholar
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1), 101.CrossRefGoogle Scholar
Hebisch, U. & Weinert, H. J. (1998). Semirings: Algebraic Theory and Applications in Computer Science. Series in Algebra, Vol. 5. World Scientific Publishing Co., Inc., River Edge, NJ. Translated from the 1993 German original.CrossRefGoogle Scholar
Metcalfe, G., Paoli, F., & Tsinakis, C. (2010). Ordered algebras and logic. In Hosni, H., and Montagna, F., editors. Probability, Uncertainty and Rationality. CRM Series, Vol. 10. Pisa: Edizioni della Normale, pp. 383.Google Scholar
Meyer, R. K. & McRobbie, M. A. (1982a). Multisets and relevant implication I. Australasian Journal of Philosophy, 60, 107139.CrossRefGoogle Scholar
Meyer, R. K. & McRobbie, M. A. (1982b). Multisets and relevant implication II. Australasian Journal of Philosophy, 60, 265281.CrossRefGoogle Scholar
Moraschini, T. (2016). The semantic isomorphism theorem in abstract algebraic logic. Annals of Pure and Applied Logic, 167(12), 12981331.CrossRefGoogle Scholar
Paoli, F. (2002). Substructural Logics: A Primer. Trends in Logic—Studia Logica Library, Vol. 13. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Pynko, A. P. (1999). Definitional equivalence and algebraizability of generalized logical systems. Annals of Pure and Applied Logic, 98(1–3), 168.CrossRefGoogle Scholar
Raftery, J. G. (2006). Correspondences between Gentzen and Hilbert systems. Journal of Symbolic Logic, 71(3), 903957.CrossRefGoogle Scholar
Raftery, J. G. (2013). Order algebraizable logics. Annals of Pure and Applied Logic, 164(3), 251283.CrossRefGoogle Scholar
Rebagliato, J. & Verdú, V. (1993). On the algebraization of some Gentzen systems. Fundamenta Informaticae, 18(2–4), 319338.Google Scholar
Rebagliato, J. & Verdú, V. (1995). Algebraizable gentzen systems and the deduction theorem for gentzen systems. Mathematics Preprint Series, Vol. 175. University of Barcelona.Google Scholar
Ripley, D. (2015). Contraction and closures. Thought, 4, 131138.Google Scholar
Russo, C. (2013). An order-theoretic analysis of interpretations among propositional deductive systems. Annals of Pure and Applied Logic, 164(2), 112130.CrossRefGoogle Scholar
Singh, D., Ibrahim, A. M., Yohanna, T., & Singh, J. N. (2008). A systematization of fundamentals of multisets. Lecturas Matematicas, 29(1), 3348.Google Scholar
Torrens, A. (1991). Algebraic models of multidimensional deductive systems. Unpublished manuscript.Google Scholar
Troelstra, A. S. (1992). Lectures on Linear Logic. CSLI Lecture Notes, Vol. 29. Stanford, CA: Stanford University, Center for the Study of Language and Information.Google Scholar