Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T12:18:38.273Z Has data issue: false hasContentIssue false

AGGREGATION AND IDEMPOTENCE

Published online by Cambridge University Press:  07 August 2013

LLOYD HUMBERSTONE*
Affiliation:
Monash University
*
*DEPARTMENT OF PHILOSOPHY SCHOOL OF PHILOSOPHICAL HISTORICAL AND INTERNATIONAL STUDIES MONASH UNIVERSITY VICTORIA 3800, AUSTRALIA

Abstract

A 1-ary sentential context is aggregative (according to a consequence relation) if the result of putting the conjunction of two formulas into the context is a consequence (by that relation) of the results of putting first the one formula and then the other into that context. All 1-ary contexts are aggregative according to the consequence relation of classical propositional logic (though not, for example, according to the consequence relation of intuitionistic propositional logic), and here we explore the extent of this phenomenon, generalized to having arbitrary connectives playing the role of conjunction; among intermediate logics, LC, shows itself to occupy a crucial position in this regard, and to suggest a characterization, applicable to a broader range of consequence relations, in terms of a variant of the notion of idempotence we shall call componentiality. This is an analogue, for the consequence relations of propositional logic, of the notion of a conservative operation in universal algebra.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bigelow, J. (1981). Semantic nominalism. Australasian Journal of Philosophy, 59, 403421.Google Scholar
Blok, W. J., & Pigozzi, D. (1989). Algebraizable logics. Memoirs of the American Mathematical Society, 77, No. 396.CrossRefGoogle Scholar
Blok, W. J., & Raftery, J. G. (2004). Fragments of R-mingle. Studia Logica, 78, 59106.CrossRefGoogle Scholar
Bull, R. A. (1964). Some results for implicational calculi. Journal of Symbolic Logic, 29, 3339.Google Scholar
Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Czelakowski, J. (2001). Protoalgebraic Logics. Dordrecht, The Netherlands: Kluwer.Google Scholar
Czelakowski, J., & Pigozzi, D. (2004). Fregean logics. Annals of Pure and Applied Logic, 127, 1776.Google Scholar
Dummett, M. A. (1959). A propositional calculus with denumerable matrix. Journal of Symbolic Logic, 24, 97106.CrossRefGoogle Scholar
Dunn, J. M. (1970). Algebraic completeness results for R-mingle and its extensions. Journal of Symbolic Logic, 35, 113.Google Scholar
Dunn, J. M., & Hardegree, G. M. (2001). Algebraic Methods in Philosophical Logic. Oxford, UK: Clarendon Press.CrossRefGoogle Scholar
Dunn, J. M., & Meyer, R. K. (1971). Algebraic completeness results for Dummett’s LC and its extensions. Zeitschrfit für mathematische Logik und Grundlagen der Mathematik, 17, 225230.Google Scholar
Gabbay, D. M. (1981). Semantical Investigations in Heyting’s Intuitionistic Logic. Dordrecht, The Netherlands: Reidel.Google Scholar
Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Amsterdam, The Netherlands: Elsevier.Google Scholar
Goldstern, M., & Pinsker, M. (2008). A survey of clones on infinite sets. Algebra Universalis, 59, 365403.Google Scholar
Horn, A. (1969). Free L-algebras. Journal of Symbolic Logic, 34, 475480.Google Scholar
Humberstone, L. (1986). Extensionality in sentence position. Journal of Philosophical Logic, 15, 2754; corrigendum (1988), ibid., 17, 221–223.Google Scholar
Humberstone, L. (1997). Singulary extensional connectives: A closer look. Journal of Philosophical Logic, 26, 341356.Google Scholar
Humberstone, L. (2011). The Connectives. Cambridge, MA: MIT Press.Google Scholar
Humberstone, L. (2013). Replacement in logic. Journal of Philosophical Logic, 42, 4989.Google Scholar
Ježek, J., Marković, P., Maróti, M., & McKenzie, R. (2000). Equations of tournaments are not finitely based. Discrete Mathematics, 211, 243248.Google Scholar
Keenan, E. L., & Stavi, J. (1986). A semantic characterization of natural language determiners. Linguistics and Philosophy, 9, 253326.Google Scholar
Köhler, P. (1981). Brouwerian semilattices. Transactions of the American Mathematical Society, 268, 103126.Google Scholar
Kracht, M. (2003). The Mathematics of Language. Berlin, Germany: de Gruyter.Google Scholar
Lukasiewicz, J. (1953). A system of modal logic. In Borkowski, L., editor. Jan Lukasiewicz: Selected Works, Amsterdam, The Netherlands: North-Holland, pp. 352390, 1970; first appeared in (1953), Journal of Computing Systems, 1, 111–149.Google Scholar
Meyer, R. K. (1973). Conservative extension in relevant implication. Studia Logica, 31, 3946.Google Scholar
Paoli, F., Spinks, M., & Veroff, R. (2008). Abelian logic and pointed lattice-ordered varieties. Logica Universalis, 2, 209233.Google Scholar
Quackenbush, R. W. (1972). Some remarks on categorical algebras. Algebra Universalis, 2, 246.Google Scholar
Quackenbush, R. W. (1974). Some classes of idempotent functions and their compositions. Colloquium Mathematicum, 29, 7181.Google Scholar
Rasiowa, H. (1955). On a fragment of the implicative propositional calculus (English Summary). Studia Logica, 3, 225226.Google Scholar
Rautenberg, W. (1989). A calculus for the common rules of ∧ and ∨. Studia Logica, 48, 531537.Google Scholar
Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In Henkin, L., et al. ., editors. Proceedings of the Tarski Symposium. Providence, Rhode Island: American Mathematical Society, pp. 188197.Google Scholar
Segerberg, K. (1982). Classical Propositional Operators. Oxford, UK: Clarendon Press.Google Scholar
Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-Conclusion Logic. Cambridge, MA: Cambridge University Press.Google Scholar
Smiley, T. (1963). Relative necessity. Journal of Symbolic Logic, 28, 113134.Google Scholar
Van Fraassen, B. C. (1969). Facts and tautological entailments. Journal of Philosophy, 66, 477487.Google Scholar