Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T00:06:38.817Z Has data issue: false hasContentIssue false

THE UNIVERSAL SET AND DIAGONALIZATION IN FREGE STRUCTURES

Published online by Cambridge University Press:  03 June 2011

REINHARD KAHLE*
Affiliation:
Centria and Departamento de Matemática Universidade Nova de Lisboa
*
*CENTRIA AND DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE NOVA DE LISBOA, P–2829-516 CAPARICA, PORTUGAL. E-mail:[email protected]

Abstract

In this paper we summarize some results about sets in Frege structures. The resulting set theory is discussed with respect to its historical and philosophical significance. This includes the treatment of diagonalization in the presence of a universal set.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Aczel, P. (1977). The strength of Martin Löf’s intuitionistic type theory with one universe. In Miettinen, S., and Väänänen, J., editors. Proceedings of the Symposiums on Mathematical Logic in Oulo 1974 and in Helsinki 1975. Report No. 2 from the Dept. of Philosophy, Helsinki: University of Helsinki.Google Scholar
Aczel, P. (1980). Frege structures and the notion of proposition, truth and set. In Barwise, J., Keisler, H., and Kunen, K., editors. The Kleene Symposium, Amsterdam: North-Holland, pp. 3159.CrossRefGoogle Scholar
Beeson, M. (1985). Foundations of Constructive Mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete; 3.Folge, Bd. 6. Berlin: Springer.CrossRefGoogle Scholar
Cantini, A. (1993). Extending the first-order theory of combinators with self-referential truth. Journal of Symbolic Logic, 58(2), 477513.CrossRefGoogle Scholar
Cantini, A. (1996). Logical Frameworks for Truth and Abstraction, Vol. 135 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.Google Scholar
Church, A. (1974). Set theory with a universal set. In Henkin, L., editor. Proceedings of the Tarski Symposium, Vol. XXV of Proceedings of Symposia in Pure Mathematics. Providence, R.1.: American Mathematical Society, pp. 297308.Google Scholar
Feferman, S. (1975). A language and axioms for explicit mathematics. In Crossley, J., editor. Algebra and Logic, Vol. 450 of Lecture Notes in Mathematics, Berlin: Springer, pp. 87139.Google Scholar
Feferman, S. (1979). Constructive theories of functions and classes. In Boffa, M., van Dalen, D., and McAloon, K., editors. Logic Colloquium 78, Amsterdam: North–Holland, pp. 159224.Google Scholar
Feferman, S., & Jäger, G. (1993). Systems of explicit mathematics with non-constructive μ-operator. Part I. Annals of Pure and Applied Logic, 65(3), 243263.CrossRefGoogle Scholar
Feferman, S., & Jäger, G. (1996). Systems of explicit mathematics with non-constructive μ-operator. Part II. Annals of Pure and Applied Logic, 79, 3752.CrossRefGoogle Scholar
Flagg, R., & Myhill, J. (1987a). An extension of Frege structures. In Kueker, D., Lopez-Escobar, E., and Smith, C., editors. Mathematical Logic and theoretical computer science, New York: Dekker, pp. 197217.Google Scholar
Flagg, R., & Myhill, J. (1987b). Implication and analysis in classical Frege structures. Annals of Pure and Applied Logic, 34, 3385.CrossRefGoogle Scholar
Forster, T. E. (1995). Set Theory with a Universal Set: Exploring an Untyped Universe. Number 31 in Oxford Logic Guides. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Glass, T. (1996). On power set in explicit mathematics. Journal of Symbolic Logic, 61(2), 468489.Google Scholar
Hayashi, S. & Kobayashi, S. (1995). A new formulation of Feferman’s system of functions and classes and its relation to Frege structures. International Journal of Foundations of Computer Science, 6(3), 187202.Google Scholar
Hilbert, D. (1905). Logische Principien des mathematischen Denkens. Vorlesung Sommersemester 1905, Ausarbeitung von Ernst Hellinger (Bibliothek des Mathematischen Instituts der Universität Göttingen).Google Scholar
Jäger, G. (1997). Power types in explicit mathematics? Journal of Symbolic Logic, 62(4), 11421146.CrossRefGoogle Scholar
Jäger, G. & Strahm, T. (1995). Second order theories with ordinals and elementary comprehension. Archive for Mathematical Logic, 34(6), 345375.Google Scholar
Kahle, R. (1999). Frege structures for partial applicative theories. Journal of Logic and Computation, 9(5), 683700.CrossRefGoogle Scholar
Kahle, R. (2001). Truth in applicative theories. Studia Logica, 68(1), 103128.CrossRefGoogle Scholar
Kahle, R. (2003). Universes over Frege structures. Annals of Pure and Applied Logic, 119(1–3), 191223.CrossRefGoogle Scholar
Kahle, R. (2007). The Applicative Realm, Vol. 40 of Textos de Matemática. Departamento de Matemática, Universidade de Coimbra. Habilitationsschrift at the Fakultät für Informations- und Kommunikationswissenschaften, Coimbra: Universität Tübingen.Google Scholar
Kahle, R. (2009). The universal set—a (never fought) battle between philosophy and mathematics. In Pombo, O., & Nepomuceno, Á., editors. Lógica e Filosofia da Ciência, Vol. 2 of Colecção Documenta. Lisbon: Centro de Filosofia das Ciências da Universidade de Lisboa, pp. 5365.Google Scholar
Kahle, R., & Studer, T. (2001). Formalizing non-termination of recursive programs. Journal of Logic and Algebraic Programming, 49(1–2), 114.Google Scholar
Libert, T. (2008). Positive Frege and its Scott-style semantics. Mathematical Logic Quarterly, 54(4), 410434.CrossRefGoogle Scholar
Moore, G. H. (2002). Hilbert on the infinite: The role of set theory in the evolution of Hilbert’s thought. Historia Mathematica, 29, 4064.CrossRefGoogle Scholar
Moschovakis, Y. (1994). Notes on Set Theory. Undergraduate Texts in Mathematics. Berlin: Springer.CrossRefGoogle Scholar
Oberschelp, A. (1973). Set Theory over Classes, Vol. 106 of Dissertationes Mathematicae. Warszawa: Instytut Matematyczny PANGoogle Scholar
Scott, D. (1975). Combinators and classes. In Böhm, C., editor. λ-Calculus and Computer Science Theory, Vol. 37 of Lecture Notes in Computer Science. Berlin: Springer, pp. 126.Google Scholar
Strahm, T. (1996). On the proof theory of applicative theories. PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern.Google Scholar
Troelstra, A., & van Dalen, D. (1988). Constructivism in Mathematics, Vol. 2. Amsterdam: North-Holland.Google Scholar